Cheatography

Factory Design Patterns - Table

OOP Midterm (CST8288) Cheat Sheet
by kdf via cheatography.com/214219/cs/46628/

Feature Simple Factory

Creation Single factory class

Inheritance None Extends the factory class

Flexibility Less flexible, modifications Highly flexible, follows Open/Closed
needed

Complexity Simple

rphism

Delegated to subclasses via polymorphism

More complex, requires inheritance and polymo-

Abstract

Interface for families of related
objects

Each concrete is a varient

Compatibility and consistency

Complex, involves multiple factories

Simple Factory Characteristics - Creational

Centralized Factory: Single method/class creates all objects.

Simple Structure: Used for systems with limited number of object
types.

e.g. Switch statement to run each constructor.

Use when you have a small, fixed number of object types and won't
need to extend.

Abstract Factory Elements - Creational

Abstract Factory (interface): Set of creation methods. Each for
different abstract product.

Concrete Factory: Implements creation methods. Each CF corres-
ponds to variant of product.

Abstract Product: Interface for set of distinct but related products.

Concrete Product: Implements abstract products, grouped by variant.
Each abstract product (e.g. sofa/chair) must be implemented in all
variants (e.g. Victorian/Modern).

Use when code needs to work with families of related products but
don't want to depend on concrete classes.

Singleton - Creational

Only one class instance (e.g. db connection, logs) created.

Race Condition: Two threads change same data at same time
causes weird results.

Thread-Safe: keyword Synchronized.
Double-Checked Locking: check criteria before getting lock.

Disadvantages: Global state, tight-coupling (anti-pattern).

kdf By kdf

cheatography.com/kdf/

Not published yet.

Page 2 of 2.

Last updated 20th June, 2025.

Design Patterns

Solutions to common problems. Guideline, not strict.
Provides common vocab: helps collaboration.

Creational: Right objects created in right situations. /nstantiation
optimization.
Structural: How classes/objects create larger structures. System

robustness.

Behavioral: Interaction/communication between objects. Efficient &
flexible.

OOP Terms

Encapsulation: Data + methods.
Abstraction: Information hiding.
Inheritance: Sub/super classes.

Polymorphism: Treat all subs like super.

OOP Principles

Single Responsibility: One job = one reason to change.

Dependency Injection: Receive dependencies from external source.

UML Use Case Diagrams

What a system does, not how.

Interactions between acfors and system.

Components: Actors, use cases (functions), and relationships.

Context: Clarifications, constraints, exceptions, references, annota-
tions.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kdf/
http://www.cheatography.com/kdf/cheat-sheets/oop-midterm-cst8288
http://www.cheatography.com/kdf/
https://apollopad.com

Cheatography

Factory Method Elements - Creational

Creator (abstract). Declares factory method.
Concrete Creator: Implements factory method.
Product (interface). For objects created by factory method.

Concrete Product: Implements product interface.

Use when you need to create objects without specific class or expect
product types to expand later.

Builder - Creational

Separated construction from representation. Useful for objects that
have many optional components. Allows method call chaining.

Builder Interface: Define methods for building.
Concrete Builders: Implement interface.
Director (optional). Order and use of build instructions.

Product: Object that is constructed.

DAO - Structural

From Core J2EE: separates business/domain logic.

Primary Functions: Create, read, update, delete (CRUD).

Data Source: Connection.

Domain/Business Object:

Data Access Object: CRUD operations. Abstracts access to DS.
Data Transfer Object: Models data (row). Follows Java Bean.

Java Bean Class: Default constractor, private vars with get/set.
Implements Serializable.

kdf By kdf
cheatography.com/kdf/

Not published yet.

Page 3 of 2.

Last updated 20th June, 2025.

OOP Midterm (CST8288) Cheat Sheet
by kdf via cheatography.com/214219/cs/46628/

Strategy - Behavioral

Defines family of algorithms (intent), puts each in separate class
resulting in interchangeable objects.

Can switch between algorithms at runtime without altering code.
Promotes flexibility, extensibility, and separation of concerns.
Strategy Interface: Defines set of behaviors all CS must implement.

Concrete Strategies: Implements SlI. Each CS provides specific
behavior (algorithm).

Context: Class that uses CS (delegates actual work). Contains
reference to SlI.

SOLID Principles

Purpose: To make software more understandable, flexible, and
maintainable.

Modular: Reduces bugs when creating new code.

Single Responsibility: Classes.

Open Closed: New features don't alter code.

Liskov Substitution: Sub substitutable for super.
Interface Substitution: Divide large interface into smaller.

Dependency Inversion: Depend on abstractions, not concretes.

UML Sequence Diagrams

Interaction diagram. How objects interact in particular scenario over
time.

Same diagrams from Web last term.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kdf/
http://www.cheatography.com/kdf/cheat-sheets/oop-midterm-cst8288
http://www.cheatography.com/kdf/
https://apollopad.com

	OOP Midterm (CST8288) Cheat Sheet - Page 1
	Factory Design Patterns - Table
	Simple Factory Charac­ter­istics - Creational
	Design Patterns
	Abstract Factory Elements - Creational
	OOP Terms
	OOP Principles
	Singleton - Creational
	UML Use Case Diagrams

	OOP Midterm (CST8288) Cheat Sheet - Page 3
	Factory Method Elements - Creational
	Strategy - Behavioral
	Builder - Creational
	SOLID Principles
	DAO - Structural
	UML Sequence Diagrams

