
kdf

OOP Midterm (CST8288) Cheat Sheet
by kdf via cheatography.com/214219/cs/46628/

Factory Design Patterns - Table

Feature Simple Factory Abstract

Creation Single factory class Delegated to subclasses via polymo​rphism Interface for families of related
objects

Inheri​tance None Extends the factory class Each concrete is a varient

Flexib​ility Less flexible, modifi​cations
needed

Highly flexible, follows Open/C​losed Compat​ibility and consis​tency

Complexity Simple More complex, requires inheri​tance and polymo​‐
rphism

Complex, involves multiple factories

Simple Factory Charac​ter​istics - Creational

Centra​lized Factory : Single method​/class creates all objects.

Simple Structure : Used for systems with limited number of object
types.

e.g. Switch statement to run each constr​uctor.

Use when you have a small, fixed number of object types and won't
need to extend.

Abstract Factory Elements - Creational

Abstract Factory (inter​face): Set of creation methods. Each for
different abstract product.

Concrete Factory : Implements creation methods. Each CF corres​‐
ponds to variant of product.

Abstract Product: Interface for set of distinct but related products.

Concrete Product: Implements abstract products, grouped by variant.
Each abstract product (e.g. sofa/c​hair) must be implem​ented in all
variants (e.g. Victor​ian​/Mo​dern).

Use when code needs to work with families of related products but
don't want to depend on concrete classes.

Singleton - Creational

Only one class instance (e.g. db connec​tion, logs) created.

Race Condition: Two threads change same data at same time
causes weird results.

Thread​-Safe : keyword Synchr​onized.

Double​-Ch​ecked Locking: check criteria before getting lock.

Disadv​antages: Global state, tight-​cou​pling (anti-​pat​tern).

Design Patterns

Solutions to common problems. Guideline, not strict.

Provides common vocab: helps collab​ora​tion.

Creational: Right objects created in right situat​ions. Instan​tiation
optimi​zation.

Structural: How classe​s/o​bjects create larger struct​ures. System
robustness.

Behavioral: Intera​cti​on/​com​mun​ication between objects. Efficient &
flexible.

OOP Terms

Encaps​ulation: Data + methods.

Abstra​ction: Inform​ation hiding.

Inheri​tance: Sub/super classes.

Polymo​rphism: Treat all subs like super.

OOP Principles

Single Respon​sib​ility : One job = one reason to change.

Dependency Injection: Receive depend​encies from external source.

UML Use Case Diagrams

What a system does, not how.

Intera​ctions between actors and system.

Components: Actors, use cases (funct​ions), and relati​ons​hips.

Context: Clarif​ica​tions, constr​aints, except​ions, refere​nces, annota​‐
tions.

By kdf
cheatography.com/kdf/

Not published yet.
Last updated 20th June, 2025.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kdf/
http://www.cheatography.com/kdf/cheat-sheets/oop-midterm-cst8288
http://www.cheatography.com/kdf/
https://readable.com

kdf

OOP Midterm (CST8288) Cheat Sheet
by kdf via cheatography.com/214219/cs/46628/

Factory Method Elements - Creational

Creator (abstract): Declares factory method.

Concrete Creator : Implements factory method.

Product (inter​face): For objects created by factory method.

Concrete Product: Implements product interface.

Use when you need to create objects without specific class or expect
product types to expand later.

Builder - Creational

Separated constr​uction from repres​ent​ation. Useful for objects that
have many optional compon​ents. Allows method call chaining.

Builder Interface: Define methods for building.

Concrete Builders : Implement interface.

Director (optional): Order and use of build instru​ctions.

Product: Object that is constr​ucted.

DAO - Structural

From Core J2EE: separates busine​ss/​domain logic.

Primary Functions: Create, read, update, delete (CRUD).

Data Source: Connec​tion.

Domain​/Bu​siness Object:

Data Access Object: CRUD operat​ions. Abstracts access to DS.

Data Transfer Object: Models data (row). Follows Java Bean.

Java Bean Class: Default constr​actor, private vars with get/set.
Implements Serial​izable.

Strategy - Behavioral

Defines family of algorithms (intent), puts each in separate class
resulting in interc​han​geable objects.

Can switch between algorithms at runtime without altering code.

Promotes flexib​ility, extens​ibi​lity, and separation of concerns.

Strategy Interface: Defines set of behaviors all CS must implement.

Concrete Strategies: Implements SI. Each CS provides specific
behavior (algor​ithm).

Context: Class that uses CS (delegates actual work). Contains
reference to SI.

SOLID Principles

Purpose: To make software more unders​tan​dable, flexible, and
mainta​inable.

Modular: Reduces bugs when creating new code.

Single Respon​sib​ility : Classes.

Open Closed: New features don't alter code.

Liskov Substi​tution: Sub substi​tutable for super.

Interface Substi​tution : Divide large interface into smaller.

Dependency Inversion: Depend on abstra​ctions, not concretes.

UML Sequence Diagrams

Intera​ction diagram. How objects interact in particular scenario over
time.

Same diagrams from Web last term.

By kdf
cheatography.com/kdf/

Not published yet.
Last updated 20th June, 2025.
Page 3 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kdf/
http://www.cheatography.com/kdf/cheat-sheets/oop-midterm-cst8288
http://www.cheatography.com/kdf/
https://readable.com

	OOP Midterm (CST8288) Cheat Sheet - Page 1
	Factory Design Patterns - Table
	Simple Factory Charac­ter­istics - Creational
	Design Patterns
	Abstract Factory Elements - Creational
	OOP Terms
	OOP Principles
	Singleton - Creational
	UML Use Case Diagrams

	OOP Midterm (CST8288) Cheat Sheet - Page 3
	Factory Method Elements - Creational
	Strategy - Behavioral
	Builder - Creational
	SOLID Principles
	DAO - Structural
	UML Sequence Diagrams

