

Various en	docrine organs and functions of
Hypoth- alamus (control/- integr- ator)	releasing hormones to the anterior pituitary (blood communication) and direct connection to posterior pituitary (nerve communication)
Pineal gland	sleep
Pituitary gland	1st hormones to body organs
Pancreas	Insulin and glucagon
Thyroid gland	Parafollicular cells, high blood calcium, storage of calcium in bone
Parath- yroid gland	low blood calcium, parathyroid hormone (pth), release calcium into blood from bone

Pituitary gla	and
Adrenal glands	stress response, blood pressure response, blood osmolarity, sex hormones
Thyroid gland	follicular cells, release thyroid hormone (t3 and t4) to increase metabolism and body temperature
Mammary gland	secretion of milk for offspring

Pituitary gland (cont)	
Testes	make and release testosterone
Ovaries	make and release estrogen and progesterone
Melano- cytes	makes melanin, protection from UV rays
Ductus deferens	orgasm response, semen
Uterine and vaginal muscles	orgasm response, childbirth
Liver	blood sugar regulation and storage, growth hormone signaling to muscle and bone
Bone	growth hormone cycle
Muscle	growth hormone cycle, glucose storage
Kidneys	water and blood pressure

Steroid and non-steroid hormone mechanisms

What are characteristics of steroid hormones?

lipid so they enter the cell and go into the nucleus and target DNA to make new proteins

What are characteristics of a non-steroid hormone?

do not enter cell, interact with surface proteins -> secondary messenger internally in the cell to cause response (signaling cascade)

T3T4 production for thyroid gland (hypothalamus)

Temp/metabolism feedback loop

Low metabolism - low T3T4, low body temp

T3T4 production for thyroid gland (hypothalamus) (cont)

TRH -> TSH -> follicular cells release the follicle containing T3 and T4 -> increase metabolism

Thyroid Follicular Cells and Parafollicular Cells	
Parafolli- cular	High calcium
Follicular	Low metabolism (T3 and T4)

Layers of Adrenal Gland		
Cortex		
	Zona glomer ulosa	stress response - cortisol
	Zona fascic- ulata	low blood volume - aldosterone
	Zona reticu- laris	DHEA and androsten- edione, precursors to sex hormones
Medulla		sponse - epinephrine

Basic Knowledge for Multiple Choice

Know the effects of the renin-angiotensinaldosterone system and how it regulates blood volume and blood pressure in detail

Know how ACE inhibitors work

Know how ADH works and how it regulates blood osmolarity and blood pressure

By katwalker11

Published 18th February, 2022. Last updated 18th February, 2022. Page 1 of 6. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/katwalker11/

Diabetes mellitus (I and II) effects on bg

Type I no production of insulin Type II we may or may not make insulin and body cells no longer respond to insulin - insulin resistance

Insulin beta cells use glucose so we can't control high glucose

levels

Low levels can cause diabetic coma

Endocrine Pathology

Hypert-High thyroid activity - weight hyrloss, etc., cushing's syndrome, oidism insomnia, hyperactivity Hypoth-A lack of temp. control, weight yroidsim gain, hair loss, lethargy, etc. Diabetes sugar in urine (sweet urine)

> Insipidus Kidneys processing too quickly, water goes through too

fast, excessive urination, dehydr-

ation

Mellitus insulin issues

Endocrine System

What are the similarities of the endocrine and nervous systems?

Both control systems (homeostasis and other)

What are some differences of the nervous and endocrine systems?

Mode of communication (endohormones nerv- electrial signals) Speed of response (endo- slow nerv-

Duration of change/response (endolongish term nerv- gone fast)

Blood Glucose Feedback Loop

Stimulus	Increased blood glucose
Sensor/In tegrator	Pancreatic Beta cells
Hormone Released	Insulin
Effector	Liver and skeletal muscle
Response	Liver and skeletal muscle uptake glucose -> glycogen
Result	Decrease In blood glucose and return to homeostasis

Growth Hormone Feedback Loop		
Stimulus	Low blood glucose, sleep, or stress	
Sensor/Integ- rator	Hypothalamus	
Hormone Released	GHRH	
Target	Anterior Pituitary Somato-	

tropes

Growth Hormone Feedback Loop (cont) Hormone Released Effector Liver, bones, muscles, fat cells Increase blood glucose, cell Response growth and proliferation, bone length, muscle mass, lipolysis. Decrease glucose uptake Result Return to homeostatic blood glucose levels and growth and repair of the body

Calcium Feedback Loop (High)

Stimulus	Increased blood Ca ²⁺
Sensor/In-	Parafollicular cells in thyroid
tegrator	gland
Hormone	Calctionin
released	
Effectors	Osteoblasts
Responses	Osteoblasts activity increases
	= put calcium into bone
Result	Blood calcium level
	decreases back to normal

Calcium Feedback Loop (Low

Stimulus	Decreased blood Ca ²⁺
Sensor/Integrator	Parathyroid glands
Hormone released	PTH

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!

By katwalker11

Published 18th February, 2022. Last updated 18th February, 2022.

http://crosswordcheats.com

Page 2 of 6.

cheatography.com/katwalker11/

Calcium Feedback Loop (Low) (cont)		
Effectors	Osteoclasts, kidneys, intestines	
Responses	Osteoclasts degrade bone matrix which releases calcium into blood, kidney (reabsorb Ca) targets liver which releases Vit. D. Vit D to intestines absorb more calcium	
Result	Calcium blood return to normal range	

Calcium Feedback Loop (Low)		
Stimulus	Decreased blood Ca ²⁺	
Sensor/In- tegrator	Parathyroid glands	
Hormone released	PTH	
Effectors	Osteoclasts, kidneys, intestines	
Responses	Osteoclasts degrade bone matrix which releases calcium into blood, kidney (reabsorb Ca) targets liver which releases Vit. D. Vit D to intestines absorb more calcium	
Result	Calcium blood return to normal range	

Metabolism	Feedback Loop
Stimulus	Decrease in T3 and T4 concentrations
Sensor/In tegrator	Chemo and temp receptors, Hypothalamus
Hormone Released	Hypothalamus releases TRH
Target	Anterior pituitary
Hormone released	TSH
Target	Thyroid gland (follicular cells)
Hormone released	Thyroid gland released T3 and T4
Effector	Body tissues
Response	Increased metabolic activity
Result	Return to homeostatic body temperature, increase in energy

Lymphatic System		
What are characteristics of the lymphatic system?	Vessels, nodes, and accessory organs filled with water like fluid	
What is the purpose of the lymphatic system?	To return free fluid in the body back to the blood, houses and matures the WBC	

Function of Lymphatic sys. & Accessory		
Vessels	Vessels, trunks, ducts	Absorption of interstitial fluid and transportation of lymph
Nodes	Structures that house and allow for storage of an maturation of lymphocytes	Monitor lymph fluid for pathogens
Thymus	where T cells matu	ire
Spleen	Were we send red be recycled, storage	
Lacteals	in the intestine mic	rovilli fat
MALT	nodules to monitor solutes for pathoge mucosa	_

Lymph Dra	inage
Right	right lymphatic vessels of the
lymphatic	right facde, right neck, right
duct	arm, right axillary and cervical
	lymph nodes

By katwalker11

cheatography.com/katwalker11/

Published 18th February, 2022. Last updated 18th February, 2022. Page 3 of 6.

Lymph Drainage (cont)

Left All remaining lymph vessels lymphatic and nodes of the upper body duct aka and the total lower body. Left thoracic cervical, left axillary, l+r iliac, l+r inguinal lymph nodes

Role of the lymphatic sys. in immune response

House and mature many white blood cells, we transport WBC from tissues back into circulation, nodes monitor cells and pathogens that travel through

Erythrocyte recycling

Break down old RBC with the spleen and liver, dispose of bilirubin as bile, reuse iron to make new RBC

Blood

What are general characteristics of blood?
Fluid, proteins, cells

Functions of blood

Trans Gases, nutrients, hormons, WBCs port- (immune response throughout the ation body)

Blood recipient prob and erythroblastosis fetalis

Agglutination with the wrong type blood - destroy blood, death

Blood recipient prob and erythroblastosis fetalis (cont)

Mother is Rh- and has been exposed to positive blood/antigen, has made antibodies against Rh+, will attack fetus

Clotting Disorders

Lack of platelet production = no clot = thrombocytopenia

Hemophilia - genetic disorder that stops/-lacks conversion of clotting factors

Thrombus and Embolus

Thrombus	Clot forming where it does not belong, usually in an artery with cholesterol crystal deposits
Embolus	Thrombus dislodging from the clot, can block a vessel somewhere else in the body, I.e. pulmonary embolus

Steps of Hemostasis (basic steps)

Vascular let a ton of blood in the area to

spasms	provide platelets
Platelet plug	platelets start to stick together and adhere to endothelium and CT
Coagul- ation	Prothrombin activator released by damage PA converts prothrombin into thrombin Thrombin converts fibrinogen into fibrin (insoluble - not dissolvable)

Anemia and Polycythemia Anemia low O2 to tissues Hemorrcaused by blood loss hagic anemia excessive RBC destruction Hemolytic anemia with low hematopoiesis bone marrow is not functioning Aplastic anemia enough (during and after chemo) Iron not enough iron to make deficient hemoglobin inherited Hb mutation Sickle Cell anemia Polycyhigh RBC - blood is too viscou-

Components of blood and plasma

themia

Plasma	proteins (albumins [most
	abundant], globulins, fibrin-
	ogen), water, solutes (ions,
	waste, gases, regulation
	molecules/hormones)
Formed	cells and others
elements	
Erythrocyte	transportation of gases
Leukocytes	Immune response
Platelets	Blood clotting

s/thick dec. O2 delivery to

tissues, lead to clots

By katwalker11

cheatography.com/katwalker11/

Published 18th February, 2022. Last updated 18th February, 2022. Page 4 of 6.

RBC Count	t
Low RBC	Tired/lethargy, dizziness/light headedness, increased heart rate, headaches, shortness of breath, pale skin
Extra RBC but not too high	Blood doping, inc. O2 carrying capacity, decreases fatigue, inc. performance
High RBC (low plasma - dehydr- ation)	Fatigue, shortness of breath, insomnia, itchy skin

Hematocrit

% of formed elements specifically RBC Estimate of oxygen carrying capacity

Hematopoiesis Feedback Loop		
Stimulus	Decreased O2 to tissues	
Sensor/in tefrator	Kidney	
Signal released	Erythropoietin	
Effector	Spongy bone - red bone marrow	
Response	Make RBC	
Result	Inc. delivery of O2 to tissues back to homeostasis	

Hematopoesis		
Making of	Myeloid stem cells (makes	
blood	RBC, platelets, basophils,	
cells -	eosinophils, neutrophils,	
different-	monocytes). Lymphoid stem	
iation of	cells (lymphocytes)	
stem cells		
Red bone	in spongy bone	
marrow		

Structure of Hb Subunits

Alpha chains x2

Beta chains x2

Each chain forms around an iron molecule (Fe) (1 Heme = chain + Fe)

- 4 heme = hemoglobin
- 1 heme carries 1 O2
- 1 hemoglobin carries 4 O2

Hb binding affinity for O2 and CO2			
Lungs	pH - high pH -> inc. O2 affinity and binding	Temp - cold -> inc. O2 affinity and binding	Partial Pressure - lots of O2 -> inc. O2 affinity and binding

Hb binding affinity for O2 and CO2 (cont)			
Body	pH -	Temp - lots	Partial
tissues	low pH	of	Pressure
	-> dec.	metabolism	- lots of
	O2	inc. heat ->	CO2 ->
	affinity	dec. O2	dec. O2
	and	affinity and	affinity
	binding	binding	and
	allow	allow CO2	bonding
	CO2	binding	
	bindina		

Facts for RBCs

About 44% of blood

4-7million/mm³ in an adult

Live for about 120 days

Anucleate at maturity

Purpose of RBC Shape

Biconcave	increases surface area to increase diffusion fro transportation
How does sickle cell anemia	changes the surface area of the cell, changes the Hb folding, holding/transporting
affect the shape?	less material, the hook shape can get stuck together more easily causing clots

By katwalker11

cheatography.com/katwalker11/

Published 18th February, 2022. Last updated 18th February, 2022. Page 5 of 6.

Lymphocytes

B antibody making memory cells, cells pathogens we have come across before (bacteria, virus, etc.)

T memory cells that target the cells or cells other pathogens that are foreign directly

NK cancer killers, destroy abnormal cells cells

10	طيية	00	vtes

innate immunity, bacterial Neutrophils infection adaptive immunity Lymphocytes Monocytes innate immunity, but will follow b cell orders or antibody flags, macrophage, usually stay in peripheral tissues innate immunity, parasites Eosinophils Basophils damage identifying cells,

By katwalker11

bleeding areas

increase inflammation and blood flow to damaged but not

cheatography.com/katwalker11/

Published 18th February, 2022. Last updated 18th February, 2022. Page 6 of 6.