BIO 251 Exam 1 Cheat Sheet by katwalker11 via cheatography.com/132666/cs/28035/

Various end each	locrine organs and functions of
Hypoth- alamus (control/- integr- ator)	releasing hormones to the anterior pituitary (blood communication) and direct connection to posterior pituitary (nerve communication)
Pineal gland	sleep
Pituitary gland	1st hormones to body organs
Pancreas	Insulin and glucagon
Thyroid gland	Parafollicular cells, high blood calcium, storage of calcium in bone
Parath- yroid gland	low blood calcium, parathyroid hormone (pth), release calcium into blood from bone

Pituitary gla	Ind
Adrenal	stress response, blood
glands	pressure response, blood
	osmolarity, sex hormones
Thyroid	follicular cells, release thyroid
gland	hormone (t3 and t4) to
	increase metabolism and body
	temperature
Mammary gland	secretion of milk for offspring

Pituitary gland (cont)

Pituitary gla	nd (cont)
Testes	make and release testosterone
Ovaries	make and release estrogen and progesterone
Melano- cytes	makes melanin, protection from UV rays
Ductus deferens	orgasm response, semen
Uterine and vaginal muscles	orgasm response, childbirth
Liver	blood sugar regulation and storage, growth hormone signaling to muscle and bone
Bone	growth hormone cycle
Muscle	growth hormone cycle, glucose storage
Kidneys	water and blood pressure
Steroid and mechanism	non-steroid hormone s
hormones?	naracteristics of steroid ey enter the cell and go into us and target DNA to make new
What are ch hormone?	naracteristics of a non-steroid
do not enter cell, interact with surface proteins -> secondary messenger internally in the cell to cause response (signaling cascade)	

T3T4 production for thyroid gland (hypothalamus)

Temp/metabolism feedback loop

Low metabolism - low T3T4, low body temp

Published 18th February, 2022. Last updated 18th February, 2022. Page 1 of 6. T3T4 production for thyroid gland (hypothalamus) (cont)

TRH -> TSH -> follicular cells release the follicle containing T3 and T4 -> increase metabolism

Thyroid Follicular Cells and Parafollicular Cells	
Parafolli- cular	High calcium
Follicular	Low metabolism (T3 and T4)

Layers of Adrenal Gland		
Cortex		
	Zona glomer ulosa	stress response - cortisol
	Zona fascic- ulata	low blood volume - aldosterone
	Zona reticu- laris	DHEA and androsten- edione, precursors to sex hormones
Medulla		sponse - epinephrine pinephrine

Basic Knowledge for Multiple Choice

Know the effects of the renin-angiotensin-aldosterone system and how it regulates blood volume and blood pressure in detail

Know how ACE inhibitors work

Know how ADH works and how it regulates blood osmolarity and blood pressure

C

By katwalker11

cheatography.com/katwalker11/

Sponsored by Readable.com Measure your website readability! https://readable.com

BIO 251 Exam 1 Cheat Sheet by katwalker11 via cheatography.com/132666/cs/28035/

Diabetes mellitus (I and II) effects on bg
Туре I	no production of insulin
Туре II	we may or may not make insulin and body cells no longer respond to insulin - insulin resistance
Insulin beta cells use glucose so we can't control high glucose levels	Low levels can cause diabetic coma

Endocrine Pathology

Hypert- hyr- oidism	High thyroid activity - weight loss, etc., cushing's syndrome, insomnia, hyperactivity	
Hypoth- yroidsim		emp. control, weight loss, lethargy, etc.
Diabetes	sugar in u	rine (sweet urine)
	Insipidus	Kidneys processing too quickly, water goes through too fast, excessive urination, dehydr- ation
	Mellitus	insulin issues

Endocrine System

What are the similarities of the endocrine and nervous systems?
Both control systems (homeostasis and other)
What are some differences of the nervous and endocrine systems?
Mode of communication (endo- hormones nerv- electrial signals) Speed of response (endo- slow nerv- fast) Duration of change/response (endo- longish term nerv- gone fast)
Blood Glucose Feedback Loop
Stimulus Increased blood glucose
Sensor/In Pancreatic Beta cells

tegrator	
Hormone Released	Insulin
Effector	Liver and skeletal muscle
Response	Liver and skeletal muscle uptake glucose -> glycogen
Result	Decrease In blood glucose and return to homeostasis

Growth Hormone Feedback Loop

Stimulus	Low blood glucose, sleep, or stress
Sensor/Integ- rator	Hypothalamus
Hormone Released	GHRH
Target	Anterior Pituitary Somato- tropes

Growth Hormone Feedback Loop (cont)

Hormone Released	GH
Effector	Liver, bones, muscles, fat cells
Response	Increase blood glucose, cell growth and proliferation, bone length, muscle mass, lipolysis. Decrease glucose uptake
Result	Return to homeostatic blood glucose levels and growth and repair of the body

Calcium Feedback Loop (High)		
Stimulus	Increased blood Ca ²⁺	
Sensor/In- tegrator	Parafollicular cells in thyroid gland	
Hormone released	Calctionin	
Effectors	Osteoblasts	
Responses	Osteoblasts activity increases = put calcium into bone	
Result	Blood calcium level decreases back to normal	

Calcium Feedback Loop (Low)	
Stimulus	Decreased blood Ca ²⁺
Sensor/Integrator	Parathyroid glands
Hormone released	PTH

By katwalker11

Published 18th February, 2022. Last updated 18th February, 2022. Page 2 of 6.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/katwalker11/

BIO 251 Exam 1 Cheat Sheet by katwalker11 via cheatography.com/132666/cs/28035/

Calcium Fee	dback Loop (Low) (cont)
Effectors	Osteoclasts, kidneys, intestines
Responses	Osteoclasts degrade bone matrix which releases calcium into blood, kidney (reabsorb Ca) targets liver which releases Vit. D. Vit D to intestines absorb more calcium
Result	Calcium blood return to normal range
Calcium Fee	dback Loop (Low)
Stimulus	Decreased blood Ca ²⁺
Sensor/In- tegrator	Parathyroid glands
Hormone released	PTH
Effectors	Osteoclasts, kidneys, intestines
Responses	Osteoclasts degrade bone matrix which releases calcium into blood, kidney (reabsorb Ca) targets liver which releases Vit. D. Vit D to intestines absorb more calcium
Result	Calcium blood return to normal range

By katwalker11

cheatography.com/katwalker11/

Metabolism Feedback Loop

Stimulus	Decrease in T3 and T4 concentrations
Sensor/In tegrator	Chemo and temp receptors, Hypothalamus
Hormone Released	Hypothalamus releases TRH
Target	Anterior pituitary
Hormone released	TSH
Target	Thyroid gland (follicular cells)
Hormone released	Thyroid gland released T3 and T4
Effector	Body tissues
Response	Increased metabolic activity
Result	Return to homeostatic body temperature, increase in energy

Lymphatic System

What are characteristics of the lymphatic	Vessels, nodes, and accessory organs filled with water like fluid
system?	
What is the purpose of the lymphatic system?	To return free fluid in the body back to the blood, houses and matures the WBC

Published 18th February, 2022. Last updated 18th February, 2022. Page 3 of 6.

Function of Lymphatic sys. & Accessory

Vessels	Vessels, trunks, ducts	Absorption of interstitial fluid and transport- ation of lymph
Nodes	Structures that house and allow for storage of an maturation of lymphocytes	Monitor lymph fluid for pathogens
Thymus	where T cells matu	re
Spleen	Were we send red be recycled , storage	
Lacteals	in the intestine mic absorption	rovilli fat
MALT	nodules to monitor solutes for pathoge mucosa	0

Lymph Drainage		
Right	right lymphatic vessels of the	
lymphatic	right facde, right neck, right	
duct	arm, right axillary and cervical	
	lymph nodes	

Sponsored by **Readable.com** Measure your website readability!

https://readable.com

BIO 251 Exam 1 Cheat Sheet by katwalker11 via cheatography.com/132666/cs/28035/

Lymph Drainage (cont)

Left	All remaining lymph vessels
lymphatic	and nodes of the upper body
duct aka	and the total lower body. Left
thoracic	cervical, left axillary, l+r iliac, l+r
duct	inguinal lymph nodes

Role of the lymphatic sys. in immune response

House and mature many white blood cells, we transport WBC from tissues back into circulation, nodes monitor cells and pathogens that travel through

Erythrocyte recycling

Break down old RBC with the spleen and liver, dispose of bilirubin as bile, reuse iron to make new RBC

1	What are general characteristics of blood?
	Fluid, proteins, cells

Functions of blood

Trans	Gases, nutrients, hormons, WBCs
port-	(immune response throughout the
ation	body)

Blood recipient prob and erythroblastosis fetalis

Agglutination with the wrong type blood destroy blood, death

By katwalker11

cheatography.com/katwalker11/

Blood recipient prob and erythroblastosis fetalis (cont)

Mother is Rh- and has been exposed to positive blood/antigen, has made antibodies against Rh+, will attack fetus

Clotting Disorders

Lack of platelet production = no clot = thrombocytopenia

Hemophilia - genetic disorder that stops/lacks conversion of clotting factors

Thrombus and Embolus

Thrombus	Clot forming where it does not belong, usually in an artery with cholesterol crystal deposits
Embolus	Thrombus dislodging from the clot, can block a vessel somewhere else in the body, I.e. pulmonary embolus
Stope of He	mostasis (basis stops)

Steps of Hemostasis (basic steps)

Vascular spasms	let a ton of blood in the area to provide platelets
Platelet plug	platelets start to stick together and adhere to endothelium and CT
Coagul- ation	 Prothrombin activator released by damage PA converts prothrombin into thrombin Thrombin converts fibrinogen into fibrin (insoluble - not dissol- vable)

Published 18th February, 2022. Last updated 18th February, 2022. Page 4 of 6.

Sponsored by Readable.com Measure your website readability! https://readable.com

Anemia and Polycythemia

Anemia anu	Folycyuleillia
Anemia	low O2 to tissues
Hemorr- hagic anemia	caused by blood loss
Hemolytic anemia	excessive RBC destruction with low hematopoiesis
Aplastic anemia	bone marrow is not functioning enough (during and after chemo)
Iron deficient	not enough iron to make hemoglobin
Sickle Cell anemia	inherited Hb mutation
Polycy- themia	high RBC - blood is too viscou- s/thick dec. O2 delivery to tissues, lead to clots
Components	of blood and plasma

proteins (albumins [most Plasma abundant], globulins, fibrinogen), water, solutes (ions, waste, gases, regulation molecules/hormones) Formed cells and others elements Erythrocyte transportation of gases Leukocytes Immune response Platelets Blood clotting

BIO 251 Exam 1 Cheat Sheet by katwalker11 via cheatography.com/132666/cs/28035/

RBC Count	
Low RBC	Tired/lethargy, dizziness/light headedness, increased heart rate, headaches, shortness of breath, pale skin
Extra RBC but not too high	Blood doping, inc. O2 carrying capacity, decreases fatigue, inc. performance
High RBC (low plasma - dehydr- ation)	Fatigue, shortness of breath, insomnia, itchy skin

Hematocri

% of formed elements specifically RBC

Estimate of oxygen carrying capacity

Hematopoiesis Feedback Loop		
Stimulus	Decreased O2 to tissues	
Sensor/in tefrator	Kidney	
Signal released	Erythropoietin	
Effector	Spongy bone - red bone marrow	
Response	Make RBC	
Result	Inc. delivery of O2 to tissues back to homeostasis	

By katwalker11

cheatography.com/katwalker11/

Hematopoesis

Making of	Myeloid stem cells (makes
blood	RBC, platelets, basophils,
cells -	eosinophils, neutrophils,
different-	monocytes). Lymphoid stem
iation of	cells (lymphocytes)
stem cells	
Red bone	in spongy bone
marrow	

Structure of Hb Subunits

Alpha chains x2 Beta chains x2 Each chain forms around an iron molecule (Fe) (1 Heme = chain + Fe) 4 heme = hemoglobin 1 heme carries 1 O2 1 hemoglobin - carries 4 O2

Hb binding affinity for O2 and CO2 Lungs pH -Temp -Partial high pH cold -> Pressure --> inc. lots of O2 -> inc. O2 02 affinity inc. O2 affinity and affinity and and binding binding binding

Published 18th February, 2022. Last updated 18th February, 2022. Page 5 of 6.

Hb binding affinity for O2 and CO2 (cont)

Body	pH -	Temp - lots	Partial
tissues	low pH	of	Pressure
	-> dec.	metabolism	- lots of
	O2	inc. heat ->	CO2 ->
	affinity	dec. O2	dec. O2
	and	affinity and	affinity
	binding	binding	and
	allow	allow CO2	bonding
	CO2	binding	
	binding		

Facts for RBCs

About 44% of blood

4-7million/mm³ in an adult

Live for about 120 days

Anucleate at maturity

Purpose of RBC Shape

Biconcave	increases surface area to increase diffusion fro transp- ortation
How does sickle cell anemia affect the shape?	changes the surface area of the cell, changes the Hb folding, holding/transporting less material, the hook shape can get stuck together more easily causing clots

Sponsored by Readable.com Measure your website readability! https://readable.com

BIO 251 Exam 1 Cheat Sheet by katwalker11 via cheatography.com/132666/cs/28035/

Lymphocytes	
B cells	antibody making memory cells, pathogens we have come across before (bacteria, virus, etc.)
T cells	memory cells that target the cells or other pathogens that are foreign directly
NK cells	cancer killers, destroy abnormal cells

LeukocytesNeutro-
philsinnate immunity, bacterial
infectionLympho-
cytesadaptive immunity
output output output
output output output
b cell orders or antibody flags,
macrophage, usually stay in
peripheral tissues

Eosino-	innate immunity, parasites
phils	
Basophils	damage identifying cells,
	increase inflammation and
	blood flow to damaged but not
	bleeding areas

By katwalker11

cheatography.com/katwalker11/

Published 18th February, 2022. Last updated 18th February, 2022. Page 6 of 6. Sponsored by Readable.com Measure your website readability! https://readable.com