\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{katiemc8} \pdfinfo{ /Title (grade-12-chemistry.pdf) /Creator (Cheatography) /Author (katiemc8) /Subject (GRADE 12 CHEMISTRY Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{2F017D} \definecolor{LightBackground}{HTML}{F8F7FA} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{GRADE 12 CHEMISTRY Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{katiemc8} via \textcolor{DarkBackground}{\uline{cheatography.com/174181/cs/36594/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}katiemc8 \\ \uline{cheatography.com/katiemc8} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 23rd January, 2023.\\ Updated 24th January, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Chemistry}}- study of physical properties of matter} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{matter}} - anything that has mass or takes up space} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Areas of chemistry}} - organic, inorganic, biochemistry, analytical, and physical} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{organic chemistry}} - study of chemicals containing carbon} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{inorganic chemistry}} - study of chemicals not containing carbon} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{biochemistry}} - study of processes taking place in organisms} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{analytical chemistry}} - study of composition of matter} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{physical chemistry}} - study of the mechanism, rate, and energy transfer that occurs when matter changes} \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{pure}} - pursuit of knowledge for itself} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{applied}} - research directed to a specific goal} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{macroscopic}} - visible to human eye} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{microscopic}} - only visible with microscope} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Antoine Lavoisier}} - made chemistry become a measurable, observable science} \tn % Row Count 6 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{scientific method}} - observe, test hypothesis, and develop theories} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{hypothesis}} - proposed explanation} \tn % Row Count 9 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{experiment}} - test a hypothesis} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{pure}} - pursuit of knowledge for itself} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{applied}} - research directed to a specific goal} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{macroscopic}} - visible to human eye} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{microscopic}} - only visible with microscope} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Antoine Lavoisier}} - made chemistry become a measurable, observable science} \tn % Row Count 6 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{scientific method}} - observe, test hypothesis, and develop theories} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{hypothesis}} - proposed explanation} \tn % Row Count 9 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{experiment}} - test a hypothesis} \tn % Row Count 10 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{manipulated variable}} - variable changed intentionally during experiment} \tn % Row Count 12 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{responding variable}} - variable observed} \tn % Row Count 13 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{theory}} - well tested explanation for a broad set of observations} \tn % Row Count 15 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{scientific law}} - concise statement that summarises results of of observations and experiments} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{extensive property}} - property depending on amount of matter in sample} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{intensive property}} - property depending on type of matter in sample} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{mass}} - a measure of amount matter (SI unit = kg)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{volume}} - a measure of space occupied by matter} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{physical property}} - a substance that a person can measure without changing the material} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{physical change}} - properties of a material change, but not composition} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{vapour}} - a gas state of substance that is liquid or solid at room temp} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Solids}} - fixed volume, fixed shape, close particles} \tn % Row Count 15 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Liquids}} - free shape, fixed volume, medium particle space} \tn % Row Count 17 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Gas}} - free shape, easy to compress, far particles} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Addition and Subtraction of Sig Figs}} - round to the same number of decimal places as the measurement with the least number of decimal places} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Multiplication and Division}} - round answer to the same number of sig figs as the measurement with the least amount of sig figs} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{12.345 + 6.1 = 18.4 \newline (1.502)(3.8) = 5.7076 = 5.7} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{measurement}} - a quantity that has both a number and a unit} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{scientific notation}} - a number written as product of 2 numbers: a coefficient and 10/E to raised to a power, coefficient must be b/w 1 and 10 -{}-{}- 6.789 x 10\textasciicircum{}25\textasciicircum{}} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{accuracy}} a measurement of how close a measurement comes to the actual/true} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{precision}} - a measure of how close a series of measurement are to each other} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{sig figs}} - in measurement includes all digits that are known plus an estimated digit} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Error}} = {\bf{Experimental Value}} - {\bf{Accepted Value}} \newline {\bf{\% = | error | / accepted value x 100\%}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{density}} -intensive property b/c it has to do with type of substance, not amount and density decreases with increasing temperatures} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{density}} = mas/ volume in g/cm\textasciicircum{}3\textasciicircum{}} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{reactant}} - substance present at start of chemical reaction} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{product}} - substance present at end of chemical reaction} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{participate}} - a solid that forms and settles out of liquid mixture} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Conservation of Mass}} - in any physical/chemical reaction, the mass of reactants must = the mass of the products -{}-{}-{}- (10g H\textasciicircum{}2\textasciicircum{} + 8g O\textasciicircum{}2\textasciicircum{} = 18 H\textasciicircum{}2\textasciicircum{}O)} \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Clues that a chemical change has ocurred:}} \newline - transfer energy \newline - color change \newline - production of gas \newline - participate forms} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{temperature}} - kelvin (0C = 273 K)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{units of energy}} - is measured in calories or joules (joules is SI)} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{conversion factor}} - ratio of equivalent measurement} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{dimensional analysis}} - way to solve problems using units, dimensions, or measurements} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{5 Base of SI}} \newline meter = length \newline kilograms = mass \newline kelvin = temperature \newline second = time \newline mole = number of molecules \newline litre = volume \newline 1 J = 0.2390 cal \newline 1 cal = 4.184 Joules \newline mole = number of molecules \newline litre = volume \newline \newline Converting - 8.351 g to mg \newline smaller = multiply \newline bigger = divide} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Atom}} - smallest particle of element that retains it identity in a chemical reaction} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Subatomic particles}} - protons, neutrons, electrons} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Electrons}} - negatively charged, located outside the nucleus, tiny (9.11 x10\textasciicircum{}-24\textasciicircum{}g), discovered by J.J. Thompson} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Protons}} - positively charged, located in the nucleus, large in comparison to electrons (1.67x10\textasciicircum{}-24\textasciicircum{}), discovered by Eugen Goldstein} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Neutrons}} - no charge, in nucleus, same mass as protons, discovered by James Chadwick} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Cathode Rays}} -the high-speed electrons emitted in a stream from the heated cathode of a vacuum tube} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{J.J. Thompson's Plum Pudding Model}} - atoms were positively charged masses with negatively charged electrons distributed throughout the mass.} \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Rutherford's Atomic Model/Theory}} - The atom is mostly empty space, there is small negatively charged nucleus, electrons are located outside of and around nucleus} \tn % Row Count 22 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Democritus}} believed atoms were indivisible and indestructible.} \tn % Row Count 24 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{substance}} - uniform and definite composition of matter} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{mixture}} - a physical blend of 2+ components (can be homogeneous or heterogeneous)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{heterogeneous}} - mixture not uniform throughout} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{homogeneous}} - mixture uniform throughout} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{phase}} - any part of a solution that is uniform throughout} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{filtration}} - process separates a solid from liquid in hetero mix} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{distillation}} - separates dissolved solids from liquid, which is boiled to produce vapour that has condensed into liquid} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Sig Fig Rules}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{1.}} every non zero digit is significant & {\bf{4.}} zeros at end of number and right of a decimal are significant \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{2.}} zeros b/w non zero digits are significant & {\bf{5.}} zeros on right end of measurement that lie left of a decimal are not significant \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{3.}} zeros appearing in front of non zeros (place holders) are not significant & {\bf{6.}} there are unlimited sig figs if: you are counting or situations involving exactly defined quantities \tn % Row Count 15 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Daltons' Atomic Theory}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1. all elements are composed of tiny indivisible particles called atoms} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{2. atoms of same element are identical, atoms of any one element are different from those of another element} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{3.atoms of different elements can mix together or chemically combine in simple whole number ratios} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{4. chemical reactions occur when atoms are separated, joined, or arranged. atoms of one element are never changed into atoms of another element.} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{0.87957 cm} p{0.78858 cm} x{1.36485 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{3.833cm}}{\bf\textcolor{white}{Summary of Principle Energy Levels, and, Orbitals}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Principle Energy Level}} & {\bf{Number of Sublevels}} & {\bf{Type of Sublevels}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} n = 1 & 1 & 1s (1 orbital) \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} n = 2 & 2 & 2s (1 orbital), 2p (3 orbital) \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} n = 3 & 3 & 3s (1 orbital), 3p (3 orbital), 3d (5 orbital) \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} n = 4 & 4 & 4s (1 orbital), 4p (3 orbital), 4d (5 orbital), 4f (7 orbital) \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Atomic Number}} - number of protons in nucleus in atom} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Mass Number}} - protons + neutrons = total mass \#} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{\# neutrons}} = atomic \# - mass\#} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.27021 cm} x{2.16279 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{{\bf{Maximum Numbers of Electrons}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Energy Level N}} & {\bf{Maximum Number of Electrons}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1 & 2 \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} 2 & 8 \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} 3 & 18 \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} 4 & 32 \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{element}} - simplest form of matter that has unique properties} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{compound}} - substance containing 2+ elements in fixed proportion} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Compounds can be broken down, but elements cannot.}} \newline Scientists use chemical symbols to represent elements. \newline Chemical symbols are always 1 or 2 letters with first letter capitalized} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 5}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Quantum of Energy}} - is amount of energy required to move an electron from one energy level to another} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Orbit}} - each is associated with an energy level. The orbit an electron is in, determines energy of electron. Electrons can change orbits by gaining or losing energy} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Aufbau Principle}} - electrons occupy orbitals of lowest energy first} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\emph{*Electron Configuration}} - ways electron are arranged in various orbitals} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Pauli Exclusion Principle}} - atomic orbital can hold at most 2 electrons with opposite spin direction ↑↓} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Hunds Rule}} - electrons occupy orbitals of same energy in way that makes \# of electrons w/ same spin direction as large as possible} \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Atomic Number}} - number of protons in nucleus in atom} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Mass Number}} - protons + neutrons = total mass \# (total \# of of protons in nucleus of an element)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{\# neutrons}} = atomic \# - mass\#} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{isotopes}} - atoms same element that have same atomic number, but different atomic masses due to difference of neutrons} \tn % Row Count 8 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{atomic mass}} - a unit of mass to = \textasciicircum{}1/12\textasciicircum{} the mass of a carbon 12 atom} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{period}} - horizontal row of elements in periodic table} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{group}} - vertical column of elements in periodic table} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}