\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{katiefocht25 (katiefocht)} \pdfinfo{ /Title (unit-7-chp-21.pdf) /Creator (Cheatography) /Author (katiefocht25 (katiefocht)) /Subject (unit 7 chp 21 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{D6B0F7} \definecolor{LightBackground}{HTML}{F4EBFD} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{unit 7 chp 21 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{katiefocht25 (katiefocht)} via \textcolor{DarkBackground}{\uline{cheatography.com/132231/cs/27109/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}katiefocht25 (katiefocht) \\ \uline{cheatography.com/katiefocht} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 15th March, 2021.\\ Updated 15th March, 2021.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{NATURAL SELECTION REMINDER}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- individuals DO NOT evolve} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-it acts on individuals but the evolutionary impact of evolution is only seen in a population of organisms over time!} \tn % Row Count 4 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{GENETIC VARIATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{-individual variation occurs in al species and often reflects {\bf{genetic variation}}, differences among individuals in the composition of their genes or other DNA segments} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- not all phenotypic variation is heritable. Phenotype is the prodcut of an inherited genotype and environmental influences. Only the genetic component of variation has evolutionary consequences} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- genetic variation provides the raw material for evolutionary change, without genetic variation, {\bf{evolution}} cannot occur} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{HETEROZYGOTE ADVANTAGE}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{occurs when the heterozygote genotype has a higher relative fitness than either the homozygous dominant or recessive genotype} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{EXAMPLE:}} Malaria and Sickle Cell} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Homozygous dominant (normal)- die of malaria (HbHb)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Homozygous recessive- die of sickle cell anemia (HsHs)} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Heterozygote Carriers (HbHs)- relatively free of malaria sick cell anemia. They survive more, therefore are more common in the population} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{MODES OF NATURAL SELECTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{directional selection}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{favors one extreme} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{disruptive selection}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{favors the 2 extremes and not the middle} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{stabilizing selection}}} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{favors the middle} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{GENE FLOW}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{the transfer of alleles into and out of a population due to the movement of fertile individuals or their gametes} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- tends to reduce differences between populations} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.73275 cm} x{1.24425 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{HOW DO WE MEASURE CHANGE?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{population}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-localized group of individuals that belong to the same species} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{species}}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{a group of populations who have the ability to interbreed and produce fertile offspring in nature} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{gene pool}}} \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{a collection of alleles within the population} \tn % Row Count 8 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{allele frequency}}} \tn % Row Count 9 (+ 1) % Row 7 \SetRowColor{white} how common is that allele with the population & think: A vs a \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{GENETIC DRIFT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- chance events that cause allele frequencies to fluctuate unpredictably from one generation to the next especially in small populations} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- 2 ways genetic drift can occur in small populations:} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{1. Founder Effect} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2. Bottleneck Effect} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{CONDITIONS FOR H-W EQUILIBRIUM}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{1. No mutations} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2. Random mating} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{3. No natural selection} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{4. Extremely large population size} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{5. No gene flow} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{MICROEVOLUTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{the smallest scale we can define evolution occurs as changes in allele frequencies in a population over time} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- {\bf{allele:}} the different versions of the SAME GENE} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{CREATING A PERFECT ORGANISM}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Natural Selection cannot create a perfect organisms because...} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{1. selection can act only on existing variation} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{2. evolution is limited by historical constraints} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{3. adaptations are often compromises} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{4. chance, natural selection, and the environment interact} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{ADAPTIVE EVOLUTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{natural selection consistently increases the frequencies of alleles that provide reproductive advantage and thus leads to adaptive evolution!!}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-although we may refer to the relative fitness of a genotype, the entity that is subjected to natural selection is the whole organism, not the underlying genotype} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{-natural selection acts on the genotype indirectly, via how the genotype affects the phenotype} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{GENETIC DRIFT - 4 KEY POINTS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{1. significant in small populations} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2. causes allele frequencies to change at random} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{3. leads to a loss of genetic variation within populations} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{4. can cause harmful alleles to become fixed} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{MUTATIONS, AND MATING}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- although new mutations can modify allele frequencies, because mutations are rare, the change from generation to generation is very small} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- mutation can ultimately have a large effect on allele frequencies when it produces new alleles that strongly influence fitness in a positive or negative way} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- {\emph{nonrandom mating}} can affect the frequencies of homozygous and heterozygous genotypes, but it usually has no effect on allele frequencies in the gene pool} \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{HARDY-WEINBERG PRINCIPLE}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- describes the gene pool of a population that is not evolving} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- states that the frequencies of alleles and genotypes in a population will remain constant from generation to generation as long as {\bf{ONLY}} Mendelian segregation and recombination of alleles are at work} \tn % Row Count 7 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{VARIATION WITHIN A POPULATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{population geneticists measure genetic variation in a population by determining the amount of {\bf{heterozygosity}} at the gene level and the molecular level of DNA {\bf{(nucleotide variability)}}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{VARIATION WITHIN A POPULATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{quantitative characters}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{most traits vary along a continuum within a population} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{usually result from the influence of 2+ genes on a single trait} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{VARIATION WITHIN A POPULATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{discrete characters}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{classified on an either-or basis} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{usually determined by a single gene locus} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{H-W EQUILIBRIUM EQUATIONS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- useful in determining how fast a population is changing} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-based on a simple Punnett square where {\bf{p}} is the frequency of the {\bf{dominant allele}} and {\bf{q}} is the frequency of the {\bf{recessive allele}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{-frequency of dominant and recessive alleles MUST equal 1 (100\%)} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{p + q = 1} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{frequency of the genotypes must equal 1 (100\%)} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{p2 + 2pq + q2 = 1} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{SEXUAL SELECTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Charles Darwin was the first scientist to investigate sexual selections, which is selection for mating success} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-{\bf{sexual dimorphism}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{differences in secondary sex characteristics} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-{\bf{intrasexual selection}}} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{competition among individuals of one sex for mates of the opposite sex} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-{\bf{intersexual selection}}} \tn % Row Count 9 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{mate choice- one sex is choosy in selecting mates from the other sex} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{SOURCES OF GENETIC VARIATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{sexual reproduction}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- through the process of sexual reproduction we are mixing up the genes (DNA) of 2 parents to create 1 offspring with a mixture of the parental traits} \tn % Row Count 4 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} x{4.4793 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{SOURCES OF GENETIC VARIATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{- {\bf{mutations}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{- a change in the nucleotide sequence of an organisms DNA} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{* some mutations can alter gene number or position} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} & = deletions \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} & = duplications \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} & =translocations \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} & =inversions \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{NATURAL SELECTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{-based on differential survival and reproductive success} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-individuals in a population vary in their heritable traits} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{-individuals with variations better suited to the environment tend to produce more offspring than those with variations that are less well suited} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{-as a result of selection, alleles are passed on to the next generation in frequencies different from their relative frequencies in the present population} \tn % Row Count 11 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{-by consistently favoring some alleles over others, natural selection can cause {\bf{{\emph{adaptive evolution}}}} (evolution that results in a better match between organisms and their environment)} \tn % Row Count 15 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{3 MAIN CAUSES OF ALLELE FREQUENCY CHANGES}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{1. Natural Selection}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{2. Genetic Drift}} & chance events that alter allele frequencies \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{3. Gene Flow }} & the transfer of alleles between populations \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}