Chemistry VSEPR Cheat Sheet

Cheatography

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Molecular Geome	etry	Valence B	ond Theory (cont)	Intermo	Intermolecular Forces			
VSEPR	electron pairs in the valence shell of an atom repel one another and will arrange themselves to be as far apart as possible, minimizing the repulsive interactions between them		each of the overlapping atomic orbitals must contain a single, unpaired electron. the two electrons shared by the bonded atoms must have opposite spins. the nuclei of both atoms are attracted to the shared pair of		electr- ostatic attractions between opposite charges or partial charges.	particles in the condensed phases (solids and liquids) are held together by intermolecular forces.		
electron domain	a lone pair or a bond, regardless of whether the bond is single, double, or triple		electrons. the mutual attraction for the shared electrons holds the atoms together.	van der waals forces	intermole- cular forces acting between atoms or molecules in a pure substance.	include dipole-dipole interactions (which include hydrogen bonding) and dispersion forces.		
electron domain geometry (EG)	eometry (EG) domains (bonds and lone pairs) around the central atom	valence bond theory explains	a covalent bond will form between two atoms if the potential energy of the resulting molecule is lower than the					
	arrangement of bonded atoms o lone pairs on any of the	why covalent bonds	combined potential energies of the isolated atoms.	dipole - dipole	attractive forces that act	partial positive charge	the larger the	
the central atoms	, MG is the same as EG. angle between two adjacent bonds in a molecule or polyatomic ion	form.	formation of a covalent bond gives off energy; energy must be supplies to a molecule to break covalent bonds.		between polar molecules.	on one molecule is	dipole, the larger the attractive	
AB5 molecules contain 2 bond angles because positions occupies by bonds in a trigonal bipyramid are not all equal.	1) equatorial: 3 bonds arranged in a trigonal plane 2) axial: 2 bonds that form an axis perpen- dicular to the trigonal plane	forms whe on two ato shared in be of oppo	of valence bond theory: a bond en slightly occupied atomic orbitals oms overlap. the two electrons the region of orbital overlap must osite spin. formation of a bond a lower potential energy for the			partial negative charge on the neighb- oring molecule.	force.	

Valence Bond Theory

valence	bonds form between atoms when
bond	atomic orbitals overlap, thus
theory	allowing the atoms to share
	valence electrons.

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 1 of 6. Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Chemistry VSEPR Cheat Sheet

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Intermolecu	ılar Forces (co	ont)		Intermolecu	lar Forces (co	nt)		Intermolecu	lar Forces (co	ont)	
hydrogen bonding	a strong type of dipole- dipole interaction that occurs in molecules containing hydrogen bonded to a small, highly electrone- gative atom, such as nitrogen, oxygen, or	within a series of hydrogen compounds of group 14, the boiling point increases with increasing molar mass.	the sam trend is observe for all b the smalles	dispersion neforces depends edon how utnobile the electrons it in the r molecule are.	in small molecules, the electrons are relatively close to the nuclei and cannot move about very freely. thus, the electron distribution is not easily polarized.	in larger molecules, the electrons are farther away from the nucleus and can move about more freely. thus, electron distribution is easily polarized, resulting	electron a compou has, the more easily	reif a e compound his polar, dipole- undipole e forces and dispersion forces are edacting on it.	if a molecule is polar with a hydrogen bonded to fluorine, nitrogen, or oxygen, dipole- dipole (including hydrogen) and dispersion forces are acting on it.	if the compo nonpolar, or dispersion fo acting on it.	nly orces ar
dispersion forces	fluorine. attractive forces that act between all molecules, nonpolar and polar.	forces between an instan- taneous dipole (fleeting, temporary dipole) and induced dipoles (instanta- neous dipoles can induce neighboring dipoles).	when a nonpola molecul acquire an insta taneous dipole, i is polarize	ar Ie S an- S		in larger instan- taneous dipoles, larger induced dipoles, and larger intermole- cular forces overall.		ion-dipole intera- ctions	attraction between ions and polar molecules in solutions.	magnitude depends on the charge and size of the ion and on the dipole moment and size of the polar molecule.	cation: interac more strong with dipole: than anions becau they te to be smalle ion wit higher charge and smalle size w interac more

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 2 of 6. Sponsored by Readable.com Measure your website readability! https://readable.com with w molec

Cheatography

Chemistry VSEPR Cheat Sheet by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Intermolecular Forces (cont)				Hybridizat	ion of Multiple Bonds (cont)	Deviation from Ideal Bond Angles (cont)			
strongest f to weakest force: Hybridizati		-dipole, hydr ole-dipole, di e Bonds	•	pi bonds restrict the rotation of a molecule in a way	the pi bond restricts rotation about the sigma bond, making the molecules rigid,	multiple bonds rep strongly than sing because they con electron density.	le bonds b tain more s s	nultiple oonds are horter than ingle oonds.	
sigma bonds	first bond formed and stronger than pi bonds	shared electron density concen- trated directly along the intern- uclear	overlap of hybrid orbitals that point directly toward each other	that sigma bond do over all bond Deviation strength thamepi bpaids take up more	from Ideal Bond Angles a lone pair on the central atom is attracted only to the nucleus of that atom. a bonding pair is simultaneously attracted to the	Bonding Theory in species that ca ented by two or m structures, the pi delocalized, mean are spread out ov molecule and not just two atoms.	hore resonance bonds are hing that they er the	localized bonds are those constr- ained to two	
pi bonds	second bond formed and	axis form when parallel, unhybr-	electron density concen- trated	space Idsen emeciling thairs. sigma	nuclei of both the bonding atoms. lone pairs have more freedom to spread out and greater capacity to repel other electron domains.	Hybridization of A	tomic Orbitals atomic orbita form hybrid o	atoms. als mix to	
	weaker than sigma bonds	eaker idized p above bonds an orbitals and and gma sideways below contribute onds overlap. plane of less to		orbitals and and a sideways below contribute ds overlap. plane of less to	n orbitals and and ma sideways below contribute		hybrid orbitals	orbitals form hybridization combination d atomic orb	of some of s, p, or
				overall bond strength than		each sp hybrid orbital has one small lobe and one large lobe. number of electro	they are orie opposite dire a 180 degree between the	ections with e angle m.	
singly occupied p orbitals give rise to multiple bonds.	one sigma and one pi bond together constitute a double bond.	0	and two pi b onstitute a tri			number of hybrid equal to the numb needed to mix.	orbitals which i	s also	

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 3 of 6. Sponsored by Readable.com Measure your website readability! https://readable.com

Chemistry VSEPR Cheat Sheet

Cheatography

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

	nic Orbitals (cont)	Molecular (Orbital Theory			Molecular (Orbital Theory (cont)
elements in the third period of the periodi table and beyond do not obey the octet ru because they have o orbitals that can hold additional electrons.	c where there are more than 4 electron domains d on the central d atom, include d orbitals in hybrid- ization.	molecular orbital theory	atomic orbitals involved in bonding combine to form new molecular	molecular orbital theory predicts that the more effective the	fill in order of increasing energy.		orbitals that result from the interaction of atomic orbitals of bonding atoms. similar to atomic orbitals - they have specific shapes and energies and can accomm- odate a maximum of two electrons.
	sp ³ d have shapes similar to sp, sp ² , and sp ³ orbitals - one large lobe and one small lobe.		orbitals that are associated with the whole molecule rather than	intera- ction or overlap of the atomic orbitals, the lower		-	two electrons residing in the same molecular orbital must have opposite spins.
do not use hybrid or molecular geometrie geometries that are		with individual atoms.	in energy the resulting				
Molecular Geometry polar molecule	and Polarity a bond between two atoms of different electronegativities			bonding molecular orbitals will be and the			
a molecule bonded with a highly electrone- gative element will be polar.	highly electronegative elements: fluorine, nitrogen, oxygen, or chlorine			higher in energy the resulting antibo-			
if the central atom ha	as lone pairs, molecule			nding molecular			
if vectors cancel each other, molecule is nonpolar.	if vectors do not cancel each other (are not equal) the molecule is polar.			orbitals will be.			
structural isomers	molecules that have the same chemical formula but have different arrangement of atoms						
By Kat	Not published yet. Last updated 12th December, 2022. Page 4 of 6.				Sponsored by Readable.com Measure your website readability! https://readable.com		

Chemistry VSEPR Cheat Sheet

Cheatography

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Molecular (Orbital Theor	y (cont)		Molecular	Orbital Theo	ry (cont)		Molecular	Orbital The	ory (cont)		
bonding	number of molecular orbitals produced is equal to the number of atomic orbitals that combined.		sigma molecular orbitals	lie along the intern- uclear axis	bonding molecular orbitals are designated sigma1s; antibonding orbital is designated sigma1s*		pi molecular orbitals	regions of electron density affect	2px orbitals lie along the intern-	2py and 2pz orbitals are aligned		
molecular orbital	energy than the atomic orbitals that combined to produce it.	trated between the nuclei, along the intern- uclear axis.	from the intera- ction of atomic orbitals that are in phase.	bond order	indicatedhigherbondhowbondorder = #stable aorder, theelectronsmoleculemoreinisstable thebondingmolecule;molecularmolecularhigherorbitals -bond#order,electrons	how stable a molecule	order how stable a molecule	order how bon stable a orde molecule mor is stab high bon		both nuclei but do not lie along the intern- uclear axis.	uclear axis and point directly toward each other, and combine	parallel to each other and combine to form pi molecular orbitals.
antibo- nding molecular orbital	higher in energy than the atomic	most of its electron density	result from the intera-			shorter bond length.	in antibo- nding molecular orbitals/2	molecular		to form sigma molecular orbitals. s, which lie a		
	orbitals that combined to produce it.	is located outside the intern- uclear region.	ction of atomic orbitals that are out of phase.					orbitals resulting from the combin- ation of p atomic orbitals are higher in energy than the molecular orbitals resulting from the combin- ation of s	lowest-er	rlap most eff hergy bondin est-energy ar	g molecular	
								atomic orbitals.				

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 5 of 6. Sponsored by **Readable.com** Measure your website readability!

https://readable.com

Cheatography

Chemistry VSEPR Cheat Sheet by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Hybridization Chart											
Number of Electron Domains on Central Atom	2	3	4	5	6						
hybrid orbitals	sp	sp ²	sp ³	sp ³ d	sp ³ d ²						
geometry	linear	trigonal planar	tetrah edral	trigonal bipyra- midal	octahedral						

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 6 of 6. Sponsored by Readable.com Measure your website readability! https://readable.com