Chemistry VSEPR Cheat Sheet

Cheatography

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Molecular Geometry			Valence Bond Theory (cont)			Intermolecular Forces			
VSEPR	electron pairs in the valence shell of an atom repel one another and will arrange themselves to be as far apart as possible, minimizing the repulsive interactions between them			each of the overlapping atomic orbitals must contain a single, unpaired electron. the two electrons shared by the bonded atoms must have opposite spins. the nuclei of both atoms are attracted to the shared pair of	intern ole- cular forces	ostatic attractions	particles ir condensed (solids and are held to intermolec	d phases I liquids)	
electron domain	a lone pair or a bond, regardless of whether the bond is single, double, or triple			electrons. the mutual attraction for the shared electrons holds the atoms together.	van der waals forces	acting	include dipole-dipole interactions (which include hydrogen bonding) and		
electron domain geometry (EG)	(EG) domains (bonds and lone pairs) around the central atom		valence bond theory explains	a covalent bond will form between two atoms if the potential energy of the resulting molecule is lower than the		between atoms or molecules in a pure substance.	dispersion forces.		
molecular geometry (MG)	arrangement of bonded atoms		/alent	combined potential energies of the isolated atoms.	dipole -		partial positive	the larger	
when there are no lone pairs on any of the the central atoms, MG is the same as EG.		bonds form.			dipole	act	charge	the	
bond angle	angle between two adjacent bonds in a molecule or polyatomic ion			formation of a covalent bond gives off energy; energy must be supplies to a molecule to break covalent bonds.	intera ctions		on one molecule is attracted to the	dipole, the larger the attractive	
AB5 molecules contain 2 bond angles because positions occupies by bonds in a trigonal bipyramid are not all equal.	1) equatorial: 3 bonds arranged in a trigonal plane 2) axial: 2 bonds that form an axis perpen- dicular to the trigonal plane	forr on sha be res	ms whe two ato ared in t of oppo	of valence bond theory: a bond in slightly occupied atomic orbitals ms overlap. the two electrons he region of orbital overlap must site spin. formation of a bond i lower potential energy for the			partial negative charge on the neighb- oring molecule.	force.	

Valence Bond Theory

valence bonds form between atoms when bond theory

atomic orbitals overlap, thus allowing the atoms to share valence electrons.

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 1 of 6.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Chemistry VSEPR Cheat Sheet by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Intermolecu	ular Forces (co	ont)		Intermolecular Forces (cont)				Intermolecular Forces (cont)				
hydrogen	a strong	within a	for	magnitude	in small	in larger	the mo	reif a	if a	if the compo	ound is	
bonding	type of	series of	groups	of	molecules,	molecules,	valence	e compound	molecule	nonpolar, or	nly	
	dipole-	hydrogen	15-17,	dispersion	the	the	electro	nsis polar,	is polar	dispersion f	orces ar	
	dipole	compounds	the sam	neforces	electrons	electrons	а	dipole-	with a	acting on it.		
	interaction	of group	trend is	depends	are	are farther	compo	undipole	hydrogen			
	that occurs	14, the	observe	edon how	relatively	away from	has, the	e forces and	bonded to			
	in	boiling	for all b	utnobile the	close to	the	more	dispersion	fluorine,			
	molecules	point	the	electrons	the nuclei	nucleus	easily	forces are	nitrogen,			
	containing	increases	smalles	t in the	and	and can	polarize	edacting on	or			
	hydrogen	with	membe	rmolecule	cannot	move	it is.	it.	oxygen,			
	bonded to	increasing	of each	are.	move	about			dipole-			
	a small,	molar	series,		about very	more			dipole			
	highly	mass.	which		freely.	freely.			(including			
	electrone-		has an		thus, the	thus,			hydrogen)			
	gative		irregula	rly	electron	electron			and			
	atom, such		high		distribution	distribution			dispersion			
	as		boiling		is not	is easily			forces are			
	nitrogen,		point.		easily	polarized,			acting on			
	oxygen, or				polarized.	resulting			it.			
	fluorine.					in larger		ion-dipole	attraction	magnitude	cation	
dispersion	attractive	forces	when a			instan-		intera-	between	depends	interac	
forces	forces that	between an	nonpola	ar		taneous		ctions	ions and	on the	more	
	act	instan-	molecu	le		dipoles,			polar	charge	strong	
	between	taneous	acquire	S		larger			molecules	and size	with	
	all	dipole	an insta	an-		induced			in	of the ion	dipole	
	molecules,	(fleeting,	taneous	6		dipoles,			solutions.	and on the	than	
	nonpolar	temporary	dipole,	it		and larger				dipole	anions	
	and polar.	dipole) and	is			intermole-				moment	becau	
		induced	polarize	ed.		cular				and size	they te	
		dipoles				forces				of the	to be	
		(instanta-				overall.				polar	smalle	
		neous								molecule.	ion wit	
		dipoles can									higher	
		induce									charge	
		neighboring									and	
		dipoles).									smalle	
											size w	
											interac	
											more	
											strong	

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 2 of 6. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com with w molec

Chemistry VSEPR Cheat Sheet by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Intermolecular Forces (cont)				Hybridizati	on of Multiple Bonds (cont)	Deviation from Ideal Bond Angles (cont)			
strongest f to weakes force: Hybridizati		-dipole, hydr ole-dipole, d <mark>e Bonds</mark>	-	pi bonds restrict the rotation of a molecule in a way	the pi bond restricts rotation about the sigma bond, making the molecules rigid,	multiple bonds re strongly than sine because they co electron density.	gle bonds b ntain more s	multiple bonds are shorter than single bonds.	
sigma bonds	first bond formed and stronger than pi bonds	shared electron density concen- trated directly along the intern- uclear axis	overlap of hybrid orbitals that point directly toward each other	thamepi bonds overall bond overall bond strength thamepi bpaids take up more space	planar, and not interchan- geable. from Ideal Bond Angles a lone pair on the central atom is attracted only to the nucleus of that atom. a bonding pair is simultaneously attracted to the nuclei of both the bonding atoms.	Bonding Theory in species that ca ented by two or r structures, the pi delocalized, mea are spread out or molecule and no just two atoms.	nore resonance bonds are ning that they ver the	localized bonds are those constr- ained to two atoms.	
pi bonds	second bond formed and weaker than sigma bonds	form when parallel, unhybr- idized p orbitals sideways overlap.	electron density concen- trated above and below plane of molecule.	Ites and contribute less to the overall bond strength than sigma bonds.	lone pairs have more freedom to spread out and greater capacity to repel other electron domains.	Hybridization of A hybridization hybrid orbitals each sp hybrid orbital has one small lobe and one large lobe. number of electro number of hybrid	atomic orbita form hybrid orbitals form hybridization combination d atomic orb they are orie opposite dire a 180 degre between the	orbitals. and by an of some of s, p, or bitals. ented in ections with e angle em. qual to the	
singly occupied p orbitals give rise to multiple bonds.	one sigma and one pi bond together constitute a double bond.	0	and two pi b	onds		equal to the num needed to mix.		bitals	

C

By Katherine Doucet (katherinedoucet)

cheatography.com/katherinedoucet/

Not published yet. Last updated 12th December, 2022. Page 3 of 6. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Chemistry VSEPR Cheat Sheet by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Hybridization of Aton	nic Orbitals (cont)	Molecular	Orbital Theory			Molecular	Orbital Theory (cont)
elements in the third period of the periodic table and beyond do not obey the octet ru because they have do orbitals that can hold additional electrons. do not use hybrid ord molecular geometries geometries that are a Molecular Geometry polar molecule bonded with a highly electrone- gative element will be polar. if the central atom has is most likely polar if vectors cancel each other, molecule is nonpolar.	in molecules where there are more than 4 electron domains on the central atom, include d orbitals in hybrid- ization. sp, sp ³ d have shapes similar to sp, sp ² , and sp ³ orbitals - one large lobe and one small lobe. bitals to predict s but to explain already known. and Polarity a bond between two atoms of different electronegativities highly electronegative elements: fluorine, nitrogen, oxygen, or chlorine as lone pairs, molecule each other (are not equal) the molecule is polar. molecules that have	Molecular orbital theory	Orbital Theory atomic orbitals involved in bonding combine to form new molecular orbitals that are associated with the whole molecule rather than with individual atoms.	molecular orbital theory predicts that the more effective the intera- ction or overlap of the atomic orbitals, the lower in energy the resulting bonding molecular orbitals will be and the higher in energy the resulting antibo- nding molecular orbitals will be	fill in order of increasing energy.	molecular orbitals	Orbital Theory (cont) orbitals that result from the interaction of atomic orbitals of bonding atoms. similar to atomic orbitals - they have specific shapes and energies and can accommodate a maximum of two electrons. two electrons residing in the same molecular orbital must have opposite spins.
	the same chemical formula but have different arrangement of atoms	Not publisł	ned vet			Sponsored	by CrosswordCheats.com
	By Katherine Doucet (katherinedoucet)			nber, 2022.		Learn to so	olve cryptic crosswords! wordcheats.com

Chemistry VSEPR Cheat Sheet

Cheatography

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Molecular Orbital Theory (cont)				Molecular (Orbital Theo	ry (cont)		Molecular (Molecular Orbital Theory (cont)							
bonding	number of molecular orbitals produced is equal to the number of atomic orbitals that combined.			broduced is equal to the molecular the orbitals are orbitals that orbitals that combined. uclear antibonding orbital				pi molecular orbitals	regions of electron density affect	2px orbitals lie along the intern-	2py and 2pz orbitals are aligned					
molecular orbital	energy than the atomic orbitals that combined to produce it.	trated between the nuclei, along the intern- uclear axis.	from the intera- ction of atomic orbitals that are in phase.	bond order	indicated how stable a molecule is	higher bond order, the more stable the molecule; higher bond order,	bond order = # electrons in bonding molecular orbitals - # electrons		both nuclei but do not lie along the intern- uclear axis.	uclear axis and point directly toward each other, and combine to form	parallel to each other and combine to form pi molecular orbitals.					
antibo- nding molecular orbital	higher in energy than the atomic orbitals	most of its electron density is	result from the intera-	from the intera-	from the intera-	from the intera-	from the intera-	from the			shorter bond length.	in antibo- nding molecular orbitals/2	molecular	px orbital	sigma molecular orbitals. s, which lie ald	along the int
	that combined to produce it.	located outside the intern- uclear region.	atomic orbitals that are out of phase.					orbitals resulting from the combin- ation of p atomic	axis, over lowest-er	rlap most eff nergy bondin st-energy an	ectively, givi g molecular					
								orbitals are higher in energy than the molecular orbitals resulting from the								
								combin- ation of s atomic orbitals.								

By Katherine Doucet (katherinedoucet)

Not published yet. Last updated 12th December, 2022. Page 5 of 6.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Chemistry VSEPR Cheat Sheet by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36037/

Hybridizati	on Chart				
Number of Electron Domains on Central Atom	2	3	4	5	6
hybrid orbitals	sp	sp ²	sp ³	sp ³ d	sp ³ d ²
geometry	linear	trigonal planar	tetrah edral	trigonal bipyra- midal	octahedral

Not published yet. Last updated 12th December, 2022. Page 6 of 6. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/katherinedoucet/

By Katherine Doucet

(katherinedoucet)