Chemistry Final Equations Cheat Sheet

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

Exam 1	Exam 1		Exam 1 (cont)			Exam 1 (cont)		Exam 1 (cont)			
Celsius Fahrenheit F to Celsius	K=C +273 F=9F/5C (C) + 32F d=m/V SI: kg/m ³ ;		electr- ostatic energy	Eel = Q1Q2/d	Q1 and Q2: product of charges;	energy (hv) of a photon used to eject electrons from a metal surface via the photoelectric effect is	hv = Ek + W	Ek = hv - W	difference in energy between two quantum	E = hv = -2.1 J (1/n(f) ² - 1/	
		g/mL or g/cm ³ commonly used	joule	1 J =	d: distance between charges 1 J = 1 N	equal to the sum of kinetic energy of the ejected electron (Ek) and the work function (W)			states energy of an electron with a given	En = -2.18 x 10 ⁻¹⁸ , (1/n ²)	
moles to atoms and molecules	1 mole = 10 ²³ atom molecules	ns or	jouro	1kg x m ² /s ²	x m	wavelength of emitte- d/absorbed light		1/wave- length =	quantum state		
moles to grams	1 mole	1 mole = formula mass (g)	speed, wavele- ngth, and frequency	c = (wavel- ength) (v)	c: speed of light - 3.00 x $10^8 m/s;$ wavele- ngth: in meters; frequency (v): in s ⁻¹ or Hz	when an electron transitions from one quantum state to another	1.09 10 ⁷ ¹ (1/r - 1/n(m ⁻ n(f) ²	wavelength of emitte- d/absorbed light	1/wavelength = 2.18 10 ⁻¹⁸ J/hc (1/n(f) ² - 1/n(i) ²)	
	mass (g)						.,(de broglie wavelength	wavelength = h/mu	m: mass
grams to atoms or molecules	mass (g) =	formula mass (g) = 6.022 x 10 ²³									of particl in kg; u:
	00	³ molecules	energy of a photon	E = hv	h: 6.63 x 10 ⁻³⁴ J x						velocit of the
avagadro's number	6.022 x 1	0 ²³ moles			s; v: frequency in s ⁻¹ or						particl in s ⁻¹ or Hz
kinetic energy of a moving object	Ek = 1/2 mu ²	u: velocity			Hz						

By Katherine Doucet (katherinedoucet)

Published 13th December, 2022. Last updated 13th December, 2022. Page 1 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Chemistry Final Equations Cheat Sheet

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

Exam 1 (cont)			Exam 2			Exam 2 (co	Exam 3					
heinse- nberg uncertainty principle	deltax x deltap > h/4pi	deltax x mdeltau > h/4pi	eltau partticleax; = Z of protons; character (obser /4pi mchaegetum - o o: shielding ved)/u of(Zeff)cle: constant or (calcu p (defined number of lated)		(obser- ved)/u (calcu-	u: dipole mo	or tænt d order atom	ele M(ele nd	 number of electrons in bonding MO - number of electrons in antibo- nding MO/2 sum of molar 			
			times velocity)	electrons		dipole	u = Q	u: dipole	elcDnəmy	mass of desired		
energy and wavelength	E = hc/wav elength	wavelengt	h (doc/l omb's law)	F = Q1Q2/d ²		moment	units (D	moment (in debeye units (D)); Q: charge	3.336 x 10 ⁻ ³⁰ C %∯ield	product/sum of molar mass of reactants = actual yield/the-		
charge of a	harge of a - C: ingle 1.6022 electron x 10 ⁻¹⁹	C: coulom	bsdifference	> 01 E	quai to 2.0		magn	magnitude;	% yieiu		oretical yield (100%)	
			polar EN difference	.5 - 2.0				r: distance between charges	Exam 4			
atomic	C 1 amu		nonpolar .66 or 10 ⁻²⁷ or purely	< .5	5			(bond length)	molarity	M = moles solute/L solution		te/L
mass units (amu)	= 1.66 x 10 ⁻²⁴ g	5	covalent) EN difference			charge magnitude	Q = u/r		dilution	Mc x Lc	Mc x mLc = Md x	c: conce n-
angstrom	1 A = 1 x	10 ⁻¹⁰ m	% by	= n x atomic mass of an of element/mole-	atomic mass	formal		e electrons - (`	LC =	mLd	trated;
mass of a single	9.10 x 10) ⁻²⁸ g	mass of an element		charge	bonding	ling electrons electrons)	; + 1/2	x in		t d: diluted	
electron	1.67262	× 10 ⁻²⁴ a		mass of compoun (100%)		electrone- gativity	EN = IE1 + EA /2			Ld	millim- oles)	
mass of a proton		Ū			coulomb	1 C = 6.2 charge	$1 \text{ C} = 6.242 \text{ x} 10^{18} \text{ ele}$		Ek =	$Ek = 1/2 mu^2$		
charge-to- mass ratio of an electron	1.76 x 10) ⁸ C/g					charge		energy			

C

By Katherine Doucet (katherinedoucet)

Published 13th December, 2022. Last updated 13th December, 2022. Page 2 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Chemistry Final Equations Cheat Sheet

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

Exam 4 (co	ont)		Exam 4 (cont)			Exam 4 (c	ont)		Exam 4 (cont)			
average kinetic energy of a group of gas molecules	u ² = uN ² /N	u ² : average speed for all the molecules in the	collyhparing Urms(1) Umnusmber of square r vahuetse cutiles mass (2 montescanteuse mass (1 s in different		ot of molar	pressure	P= force/area			· .	(slurr@2)/2scapressure N/m ²) of a fixed amount of gas at constant	
	mea squa	sample; mean square speed	gas samples graham's law	rate = 1/square	rate of diffusion	pressure exerted by a column	P = hdg	P: pressure in Pa	h: height of column	d: density of fluid in	g: temper- gravitature is ational versely constantion	
total kinetic energy of one mole of any gas	Ek = 3/2 RT	R: 8.314 J/K x mol	T: temper- ature in Kelvin	root of molar mass	or effusion is inversely propor- tional to	of fluid			in meters	kg/m ³	_ tional to 9.80 009 m/s ² volume of the gas	
root-m- ean-sq- uare- speed	Urms = square root of 3RT/molar mass	R: 8.314 J/K x mol	molar mass in kg/mol		the square root of the molar mass							

By Katherine Doucet (katherinedoucet)

Published 13th December, 2022. Last updated 13th December, 2022. Page 3 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Chemistry Final Equations Cheat Sheet

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

Exam 4 (cont)			Exam 4 (cont)			Exam 4 (c	ont)		Exam 4 (cont)			
charles law	V1/T1= V2/T2	volume of a fixed amount of gas at constant pressure is	•	V1/n1=- V2/n2	volume of a sample of gas at constant temper- ature and pressure is directly propor- tional to the number of moles in the sample	ideal gas	PV=nRT	R: 0.08206 L x atm/K x mol	Tpartia ^{pp} anpodes sarre l	P total = sum of partia		
						equation			n: _{mole} V: K _{fracti} ðfm and and mol L	Xi = ni/n total	Xi = Pi/P total	
		directly proportional to the absolute				density of a gas	d = P(molar mass)/RT	molar mass in kg/mol	Ramount of 0.08206 It × ctmsumed mol	(V/RT) at constant volume and temper- ature	n: number of moles consumec	
		temperature of the gas				molar mass of a gas	molar mass = dRT/P	R: 0.08206 L x atm/K x mol	0.08206 mass: in . x kg/mol .ttm/K x			
						van der waals	(P + an ² /V ²)(V	a and b d	epeendedted ent over water			
			combined gas law		P1V1/T- 1=P-	equation	- nb) = nRT					
		=P2-		2V2/T2	compre- ssibility factor	Z = PV/RT						

By Katherine Doucet (katherinedoucet) Published 13th December, 2022. Last updated 13th December, 2022. Page 4 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com