

by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

| Exam 1                                          |                                                            | Exam 1 (cont)                                                                                                                                                                                                                                                            |                                         |                                                                                                                  | Exam 1 (cont)                                                                                                        |                                  | Exam 1 (cont)                                        |                                                                     |                                                                   |                                             |
|-------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| Kelvin to Celsius Fahrenheit to Celsius density | K=C +273 F=9F/5C (C) + 32F d=m/V SI: kg/m <sup>3</sup> ;   | electr- Eel = Q1 and ostatic Q1Q2/d Q2: energy product of charges;                                                                                                                                                                                                       |                                         | energy (hv) of a<br>photon used to eject<br>electrons from a<br>metal surface via the<br>photoelectric effect is | hv Ek<br>= =<br>Ek hv<br>+ -<br>W W                                                                                  |                                  | difference<br>in energy<br>between<br>two<br>quantum | E = hv = -2.18 x 10<br>J $(1/n(f)^2 - 1/n(i)^2)$                    |                                                                   |                                             |
|                                                 | g/mL or<br>g/cm <sup>3</sup><br>commonly<br>used           | joule                                                                                                                                                                                                                                                                    | d: distance between charges  1 J = 1 N  | distance<br>between                                                                                              | equal to the sum of<br>kinetic energy of the<br>ejected electron (Ek)<br>and the work function<br>(W)                |                                  |                                                      | energy of<br>an electron<br>with a<br>given                         | En = $-2.18 \times (1/n^2)$                                       | 10 <sup>-18</sup> J                         |
| moles to atoms and molecules                    | 1 mole = 6.022 x<br>10 <sup>23</sup> atoms or<br>molecules | jouic                                                                                                                                                                                                                                                                    | $1 \text{kg x}$ $\text{m}^2/\text{s}^2$ | x m                                                                                                              | wavelength of emitte-<br>d/absorbed light<br>when an electron<br>transitions from one<br>quantum state to<br>another | 1/wa                             |                                                      | quantum<br>state<br>wavelength<br>of emitte-<br>d/absorbed<br>light |                                                                   |                                             |
| moles to grams                                  | 1 1 mole = mole formula = mass (g) atomic                  | speed, $c = c$ : wavele- (wavel- of ngth, and ength) 3. frequency (v) 10  mic ss mass (g)  mic formula frequency (v) 10  mic as mass (g) $c = 6.022 \times 10^{23}$ molecules ms $c = c \times $ | (wavel-                                 | •                                                                                                                |                                                                                                                      | 1.09<br>10 <sup>7</sup><br>1(1/i | m <sup>-</sup><br>n(f) <sup>2</sup>                  |                                                                     | 1/wavelength = 2.18<br>$10^{-18}$ J/hc $(1/n(f)^2$ - $1/n(i)^2$ ) |                                             |
| grams to atoms or molecules                     | mass (g) atomic formula mass (g) (g) = = 6.022 x           |                                                                                                                                                                                                                                                                          |                                         |                                                                                                                  |                                                                                                                      | 1/n(                             | i) <sup>2</sup> )                                    | de broglie<br>wavelength                                            | wavelength<br>= h/mu                                              | m:<br>mass<br>of<br>particl<br>in kg;<br>u: |
|                                                 |                                                            |                                                                                                                                                                                                                                                                          | h: 6.63 x<br>10 <sup>-34</sup> J x      |                                                                                                                  |                                                                                                                      |                                  |                                                      |                                                                     | velocit<br>of the                                                 |                                             |
| avagadro's number                               | 6.022 x 10 <sup>23</sup> moles                             |                                                                                                                                                                                                                                                                          |                                         | s; v:<br>frequency<br>in s <sup>-1</sup> or                                                                      |                                                                                                                      |                                  |                                                      |                                                                     |                                                                   | in s <sup>-1</sup><br>or Hz                 |
| kinetic<br>energy of<br>a moving<br>object      | Ek = u: velocity<br>1/2<br>mu <sup>2</sup>                 |                                                                                                                                                                                                                                                                          |                                         | Hz                                                                                                               |                                                                                                                      |                                  |                                                      |                                                                     |                                                                   |                                             |



By Katherine Doucet (katherinedoucet)

(katherinedoucet) Last Pag

cheatography.com/katherinedoucet/

Published 13th December, 2022. Last updated 13th December, 2022. Page 1 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com



by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

| Exam 1 (cont) Exar                           |                                                                                            |                          | Exam 2                                                      |                                                                       |        | Exam 2 (cor            | Exam 3                                           |                                             |                   |                                                     |                                                                                             |                   |
|----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|--------|------------------------|--------------------------------------------------|---------------------------------------------|-------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|
| heinse-<br>nberg<br>uncertainty<br>principle | g x mdeltau pamuicil<br>ertainty deltap > h/4pi mcimae<br>eiple > h/4pi of(Ziafi<br>p (def |                          | pæssentivæs parmiclears; mclnaegeum of(Zeff)cle: p (defined | Zeff Z: number = Z of protons; - o o: shielding constant or number of |        | % ionic<br>character   | = u<br>(obser-<br>ved)/u<br>(calcu-<br>lated)    | u: dipole mo                                | order<br>order    | ele<br>MC<br>ele                                    | = number of<br>electrons in bonding<br>MO - number of<br>electrons in antibo-<br>nding MO/2 |                   |
|                                              |                                                                                            |                          | as mass<br>times<br>velocity)                               | core electrons $F = Q1Q2/d^2$                                         | dipole | (100%)<br>u = Q<br>x r | u: dipole<br>moment<br>(in debeye<br>units (D)); | atom<br>dcDnemy<br>3.336                    | ma                | = sum of molar<br>mass of desired<br>product/sum of |                                                                                             |                   |
| energy and wavelength                        | •                                                                                          |                          | h <b>≑doc/lē</b> mb's<br>law)                               |                                                                       |        |                        |                                                  |                                             | x 10 <sup>-</sup> | molar mass of reactants                             |                                                                                             | :                 |
| charge of a                                  | 1.6022<br>x 10 <sup>-19</sup>                                                              | ionic EN<br>bsdifference | > or equal to 2.0                                           |                                                                       |        |                        | Q: charge<br>magnitude;<br>r: distance           | % <sup>M</sup> ield                         |                   | = actual yield/the-<br>oretical yield (100          |                                                                                             |                   |
| single<br>electron                           |                                                                                            |                          | polar EN<br>difference                                      | .5 - 2.0                                                              |        |                        |                                                  | between charges (bond length)               | Exam 4            |                                                     |                                                                                             |                   |
| atomic                                       | C<br>1 amu                                                                                 | amu 1 amu = 1.           | nonpolar < .5<br>66 or purely                               |                                                                       | < .5   |                        |                                                  |                                             | molarity          | M =<br>solu                                         | moles solution                                                                              | te/L              |
| mass units<br>(amu)                          | = 1.66<br>x 10 <sup>-24</sup><br>g                                                         | kg                       | covalent)<br>EN<br>difference                               |                                                                       |        | charge<br>magnitude    | Q = u/r                                          |                                             | dilution          | x m                                                 | Mc x<br>mLc =<br>Md x                                                                       | c:<br>conce<br>n- |
| angstrom                                     | 1 A = 1 x                                                                                  |                          | % by                                                        | % by                                                                  |        | atomic mass            | charge nonbonding electrons                      |                                             | =                 | mLd                                                 | trated;                                                                                     |                   |
| mass of a single electron                    | 9.10 x 10                                                                                  | ) <sup>20</sup> g        | mass of an element                                          |                                                                       |        | electrone-             | bonding electrons)  EN = IE1 + EA /2             |                                             |                   | Md<br>x<br>Ld                                       | (product<br>in<br>millim-                                                                   | d:<br>diluted     |
| mass of a                                    | 1.67262                                                                                    | x 10 <sup>-24</sup> g    |                                                             |                                                                       |        | gativity<br>coulomb    | 1 C = 6.2                                        | 42 x 10 <sup>18</sup> elec <b>tron</b> etic |                   | oles) $Ek = 1/2 \text{ mu}^2$                       |                                                                                             |                   |
| charge-to-                                   | 1.76 x 10                                                                                  | 0 <sup>8</sup> C/g       |                                                             |                                                                       |        |                        | charge                                           |                                             | energy            |                                                     |                                                                                             |                   |
| mass ratio<br>of an<br>electron              |                                                                                            |                          |                                                             |                                                                       |        |                        |                                                  |                                             |                   |                                                     |                                                                                             |                   |



By **Katherine Doucet** (katherinedoucet)

Published 13th December, 2022. Last updated 13th December, 2022. Page 2 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/katherinedoucet/



by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

| Exam 4 (co                                                        | nt)                                  |                                                                                       | Exam 4 (cont)                                                                                                                                 |                  |                                                  | Exam 4 (c                             | ont)             |                                                          | Exam 4 (cont)                |                                                         |                                                                  |  |
|-------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------|------------------|----------------------------------------------------------|------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--|
| average<br>kinetic<br>energy of<br>a group of<br>gas<br>molecules | $u^2 = uN^2/N$                       | u <sup>2</sup> : average speed for all the molecules in the sample; mean square speed | colhiparing Urms(1)/Urms(2) = Unmoushber of square root of molar r varbouchse colles mass (2)/molar miorlessauhersle mass (1) es in different |                  |                                                  | pressure                              | P=<br>force/area | SI unit of force: Newton (1 N = 1kg x m/s <sup>2</sup> ) | Soloyiteiso<br>(Pasu, 1 Pa   | 20/2scapressure 2) of a fixed amount of gas at constant |                                                                  |  |
|                                                                   |                                      |                                                                                       | gas<br>samples<br>graham's                                                                                                                    | rate =           | rate of                                          | pressure<br>exerted<br>by a<br>column | P = hdg          | P:<br>pressure<br>in Pa                                  | h:<br>height<br>of<br>column | d:<br>density<br>of fluid<br>in                         | g: temper-<br>gravitature is<br>ational versely<br>constant por- |  |
| total<br>kinetic<br>energy of<br>one mole<br>of any<br>gas        | Ek = 3/2<br>RT                       | R: 8.314<br>J/K x mol                                                                 | Iaw T: temper- ature in Kelvin                                                                                                                | root of<br>molar | or effusion is inversely proportional to         | of fluid                              |                  |                                                          | in<br>meters                 | kg/m <sup>3</sup>                                       | _ tional to  9.80db\$  m/s² volume  of the  gas                  |  |
| root-m-<br>ean-sq-<br>uare-<br>speed                              | Urms = square root of 3RT/molar mass | R: 8.314<br>J/K x mol                                                                 | molar<br>mass in<br>kg/mol                                                                                                                    |                  | the<br>square<br>root of<br>the<br>molar<br>mass |                                       |                  |                                                          |                              |                                                         |                                                                  |  |

C

By **Katherine Doucet** (katherinedoucet)

Published 13th December, 2022. Last updated 13th December, 2022. Page 3 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/katherinedoucet/



by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/

| Exam 4 (cont)  |                 |                                                | Exam 4 (cont)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                              | Exam 4 (cont)                  |                            |                                        | Exam 4 (cont)                                                        |                                                     |                                   |  |
|----------------|-----------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|--------------------------------|----------------------------|----------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|--|
| charles<br>law | V1/T1=<br>V2/T2 | volume of a fixed                              | ixed law V2/n2 of a gas equation gas at constant constant temperature density proportional of the constant gas at constant temperature density of a gas of the constant gas at constant temperature density and gas of a gas of the constant temperature density and gas of a gas |                                       | PV=nRT                                                       | R:<br>0.08206                  | Tpartia Parpodes saure     | P total = sum of partia                |                                                                      |                                                     |                                   |  |
|                |                 | amount of<br>gas at<br>constant<br>pressure is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | of gas at<br>constant<br>temper-<br>ature<br>and<br>pressure | equation                       |                            | L x<br>atm/K x<br>mol                  | n: <sub>mole</sub> V:<br>K <sub>fracti</sub> ðtm<br>and and<br>mol L | Xi = ni/n<br>total                                  | Xi = Pi/P<br>total                |  |
|                |                 | directly proportional to the absolute          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                              | density<br>of a gas            | d =<br>P(molar<br>mass)/RT | molar<br>mass in<br>kg/mol             | Ramount of<br>0.082061<br>× atmstrated<br>mol                        | n = P x (V/RT) at constant volume and temper- ature | n: number<br>of moles<br>consumed |  |
|                |                 | of the gas                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | propor-<br>tional to<br>the<br>number | tional to                                                    | molar<br>mass of<br>a gas      | molar<br>mass =<br>dRT/P   | R:<br>0.08206<br>L x<br>atm/K x<br>mol | molar<br>mass: in<br>kg/mol                                          |                                                     |                                   |  |
|                |                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                              | van der<br>waals               | $(P + an^2/V^2)(V$         | a and b de                             | pressure<br>ependedued<br>ent over water                             | P total = F                                         | P O2 + P H2                       |  |
|                |                 |                                                | combined<br>gas law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P1V1/n-<br>1T1-                       | P1V1/T-<br>1=P-                                              | equation                       | - nb) =<br>nRT             |                                        |                                                                      |                                                     |                                   |  |
|                |                 |                                                | yas idw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =P2-<br>V2/n2T2                       | 2V2/T2                                                       | compre-<br>ssibility<br>factor | Z = PV/RT                  |                                        |                                                                      |                                                     |                                   |  |

C

By **Katherine Doucet** (katherinedoucet)

Published 13th December, 2022. Last updated 13th December, 2022. Page 4 of 4. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

cheatography.com/katherinedoucet/