by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/ | Exam 1 | | Exam 1 (cont) | | | Exam 1 (cont) | | Exam 1 (cont) | | | | |---|--|--|---|--|--|----------------------------------|--|---|---|---| | Kelvin to Celsius Fahrenheit to Celsius density | K=C +273 F=9F/5C (C) + 32F d=m/V SI: kg/m ³ ; | electr- Eel = Q1 and ostatic Q1Q2/d Q2: energy product of charges; | | energy (hv) of a
photon used to eject
electrons from a
metal surface via the
photoelectric effect is | hv Ek
= =
Ek hv
+ -
W W | | difference
in energy
between
two
quantum | E = hv = -2.18 x 10
J $(1/n(f)^2 - 1/n(i)^2)$ | | | | | g/mL or
g/cm ³
commonly
used | joule | d: distance between charges 1 J = 1 N | distance
between | equal to the sum of
kinetic energy of the
ejected electron (Ek)
and the work function
(W) | | | energy of
an electron
with a
given | En = $-2.18 \times (1/n^2)$ | 10 ⁻¹⁸ J | | moles to atoms and molecules | 1 mole = 6.022 x
10 ²³ atoms or
molecules | jouic | 1kg x m^2/s^2 | x m | wavelength of emitte-
d/absorbed light
when an electron
transitions from one
quantum state to
another | 1/wa | | quantum
state
wavelength
of emitte-
d/absorbed
light | | | | moles to grams | 1 1 mole = mole formula = mass (g) atomic | speed, $c = c$: wavele- (wavel- of ngth, and ength) 3. frequency (v) 10 mic ss mass (g) mic formula frequency (v) 10 mic as mass (g) $c = 6.022 \times 10^{23}$ molecules ms $c = c \times $ | (wavel- | • | | 1.09
10 ⁷
1(1/i | m ⁻
n(f) ² | | 1/wavelength = 2.18
10^{-18} J/hc $(1/n(f)^2$ - $1/n(i)^2$) | | | grams to atoms or molecules | mass (g) atomic formula mass (g) (g) = = 6.022 x | | | | | 1/n(| i) ²) | de broglie
wavelength | wavelength
= h/mu | m:
mass
of
particl
in kg;
u: | | | | | h: 6.63 x
10 ⁻³⁴ J x | | | | | | velocit
of the | | | avagadro's number | 6.022 x 10 ²³ moles | | | s; v:
frequency
in s ⁻¹ or | | | | | | in s ⁻¹
or Hz | | kinetic
energy of
a moving
object | Ek = u: velocity
1/2
mu ² | | | Hz | | | | | | | By Katherine Doucet (katherinedoucet) (katherinedoucet) Last Pag cheatography.com/katherinedoucet/ Published 13th December, 2022. Last updated 13th December, 2022. Page 1 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/ | Exam 1 (cont) Exar | | | Exam 2 | | | Exam 2 (cor | Exam 3 | | | | | | |--|--|--------------------------|---|---|--------|------------------------|--|---|-------------------|---|---|-------------------| | heinse-
nberg
uncertainty
principle | g x mdeltau pamuicil
ertainty deltap > h/4pi mcimae
eiple > h/4pi of(Ziafi
p (def | | pæssentivæs parmiclears; mclnaegeum of(Zeff)cle: p (defined | Zeff Z: number = Z of protons; - o o: shielding constant or number of | | % ionic
character | = u
(obser-
ved)/u
(calcu-
lated) | u: dipole mo | order
order | ele
MC
ele | = number of
electrons in bonding
MO - number of
electrons in antibo-
nding MO/2 | | | | | | as mass
times
velocity) | core electrons $F = Q1Q2/d^2$ | dipole | (100%)
u = Q
x r | u: dipole
moment
(in debeye
units (D)); | atom
dcDnemy
3.336 | ma | = sum of molar
mass of desired
product/sum of | | | | energy and wavelength | • | | h ≑doc/lē mb's
law) | | | | | | x 10 ⁻ | molar mass of reactants | | : | | charge of a | 1.6022
x 10 ⁻¹⁹ | ionic EN
bsdifference | > or equal to 2.0 | | | | Q: charge
magnitude;
r: distance | % ^M ield | | = actual yield/the-
oretical yield (100 | | | | single
electron | | | polar EN
difference | .5 - 2.0 | | | | between charges (bond length) | Exam 4 | | | | | atomic | C
1 amu | amu 1 amu = 1. | nonpolar < .5
66 or purely | | < .5 | | | | molarity | M =
solu | moles solution | te/L | | mass units
(amu) | = 1.66
x 10 ⁻²⁴
g | kg | covalent)
EN
difference | | | charge
magnitude | Q = u/r | | dilution | x m | Mc x
mLc =
Md x | c:
conce
n- | | angstrom | 1 A = 1 x | | % by | % by | | atomic mass | charge nonbonding electrons | | = | mLd | trated; | | | mass of a single electron | 9.10 x 10 |) ²⁰ g | mass of an element | | | electrone- | bonding electrons) EN = IE1 + EA /2 | | | Md
x
Ld | (product
in
millim- | d:
diluted | | mass of a | 1.67262 | x 10 ⁻²⁴ g | | | | gativity
coulomb | 1 C = 6.2 | 42 x 10 ¹⁸ elec tron etic | | oles) $Ek = 1/2 \text{ mu}^2$ | | | | charge-to- | 1.76 x 10 | 0 ⁸ C/g | | | | | charge | | energy | | | | | mass ratio
of an
electron | | | | | | | | | | | | | By **Katherine Doucet** (katherinedoucet) Published 13th December, 2022. Last updated 13th December, 2022. Page 2 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com cheatography.com/katherinedoucet/ by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/ | Exam 4 (co | nt) | | Exam 4 (cont) | | | Exam 4 (c | ont) | | Exam 4 (cont) | | | | |---|--------------------------------------|---|---|------------------|--|---------------------------------------|------------------|--|------------------------------|---|--|--| | average
kinetic
energy of
a group of
gas
molecules | $u^2 = uN^2/N$ | u ² : average speed for all the molecules in the sample; mean square speed | colhiparing Urms(1)/Urms(2) = Unmoushber of square root of molar r varbouchse colles mass (2)/molar miorlessauhersle mass (1) es in different | | | pressure | P=
force/area | SI unit of force: Newton (1 N = 1kg x m/s ²) | Soloyiteiso
(Pasu, 1 Pa | 20/2scapressure 2) of a fixed amount of gas at constant | | | | | | | gas
samples
graham's | rate = | rate of | pressure
exerted
by a
column | P = hdg | P:
pressure
in Pa | h:
height
of
column | d:
density
of fluid
in | g: temper-
gravitature is
ational versely
constant por- | | | total
kinetic
energy of
one mole
of any
gas | Ek = 3/2
RT | R: 8.314
J/K x mol | Iaw T: temper- ature in Kelvin | root of
molar | or effusion is inversely proportional to | of fluid | | | in
meters | kg/m ³ | _ tional to 9.80db\$ m/s² volume of the gas | | | root-m-
ean-sq-
uare-
speed | Urms = square root of 3RT/molar mass | R: 8.314
J/K x mol | molar
mass in
kg/mol | | the
square
root of
the
molar
mass | | | | | | | | C By **Katherine Doucet** (katherinedoucet) Published 13th December, 2022. Last updated 13th December, 2022. Page 3 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com cheatography.com/katherinedoucet/ by Katherine Doucet (katherinedoucet) via cheatography.com/171479/cs/36062/ | Exam 4 (cont) | | | | |----------------|-----------------|--|--|---------------------------------------|--|--------------------------------|----------------------------|--|--|---|-----------------------------------|--| | charles
law | V1/T1=
V2/T2 | volume of a fixed | ixed law V2/n2 of a gas equation gas at constant constant temperature density proportional of the constant gas at constant temperature density of a gas of the constant gas at constant temperature density and gas of a gas of the constant temperature density and gas of a | | PV=nRT | R:
0.08206 | Tpartia Parpodes saure | P total = sum of partia | | | | | | | | amount of
gas at
constant
pressure is | | | of gas at
constant
temper-
ature
and
pressure | equation | | L x
atm/K x
mol | n: _{mole} V:
K _{fracti} ðtm
and and
mol L | Xi = ni/n
total | Xi = Pi/P
total | | | | | directly proportional to the absolute | | | | density
of a gas | d =
P(molar
mass)/RT | molar
mass in
kg/mol | Ramount of
0.082061
× atmstrated
mol | n = P x (V/RT) at constant volume and temper- ature | n: number
of moles
consumed | | | | | of the gas | | propor-
tional to
the
number | tional to | molar
mass of
a gas | molar
mass =
dRT/P | R:
0.08206
L x
atm/K x
mol | molar
mass: in
kg/mol | | | | | | | | | | | van der
waals | $(P + an^2/V^2)(V$ | a and b de | pressure
ependedued
ent over water | P total = F | P O2 + P H2 | | | | | | combined
gas law | P1V1/n-
1T1- | P1V1/T-
1=P- | equation | - nb) =
nRT | | | | | | | | | | yas idw | =P2-
V2/n2T2 | 2V2/T2 | compre-
ssibility
factor | Z = PV/RT | | | | | | C By **Katherine Doucet** (katherinedoucet) Published 13th December, 2022. Last updated 13th December, 2022. Page 4 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com cheatography.com/katherinedoucet/