First order Differential Equations		
Linear	$\begin{aligned} & a(t) y^{\prime}+ \\ & b(t) y= \\ & f(t) \end{aligned}$	Normal form $\mathrm{y}^{\prime}+$ $p(t) y=q(t)$
Separable	dy/dt $=\mathrm{g}(\mathrm{y})$	${ }^{*} \mathrm{~h}(\mathrm{t})$
Bernoulli	$\begin{aligned} & a(t) y^{\prime}+ \\ & b(t) y= \\ & f(t) y^{m} \end{aligned}$	
Homogeneous	$y^{\prime}=\mathrm{g}(\mathrm{y} / \mathrm{t})$	
Exact	$\begin{aligned} & \mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \\ & + \\ & \mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \\ & =0 \end{aligned}$	Exact if and only if the partials My and Nx are equal
NonExact	$\begin{aligned} & \mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \\ & + \\ & \mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \\ & =0 \end{aligned}$	When My $\ddagger \mathrm{Nx}$

First order DE's and their form

By katalyst

cheatography.com/katalyst/

Solving first order linear	
1. Make sure its in normal form	$\begin{aligned} & y^{\prime}+p(t) y \\ & =q(t) \end{aligned}$
2. Find an integrating factor	$\begin{aligned} & \mu(t)= \\ & e^{\int p(t) d t} \end{aligned}$
3. Multiply both sides of the normal form by $\mu(\mathrm{t})$ to get	$\begin{aligned} & (\mu(t) y)^{\prime}= \\ & \mu(t) q(t) \end{aligned}$
4. Integrate both sides of $(\mu(\mathrm{t}) \mathrm{y})^{\prime}=\mu(\mathrm{t}) \mathrm{q}(\mathrm{t})$ and solve for y	
Dont Forget constants of integration	
Solving FO Separable DE	
1. Rewrite y ' and $d y / d t$ and separate the variable y from the variable t to get d	dy/dt $=g(y) h(t)$ where we get... $\begin{aligned} & (1 / g(y)) d y \\ & =h(t) d t \end{aligned}$

Second and Higher Order DE's

$2^{\text {ND }}$ Order	$a(t) y^{\prime \prime}+$	Normal form $y^{\prime \prime}$
Linear	$b(t) y^{\prime}+$ $c(t) y=f(t)$	$+p(t) y^{\prime}+q(t) y=$ $r(t)$
Homoge-	$a(t) y^{\prime \prime}+$	Gen. Soltn.
neous (H)	$b(t) y^{\prime}+$	$y H(t, c 1, c 2)$
	$c(t) y=0$	
Non-Ho-	$a(t) y^{\prime \prime}+$	Gen. Soltn.
mog-	$b(t) y^{\prime}+$	$y H(t, c 1, c 2)+$
eneous	$c(t) y=f(t)$	$y p(t)$
(NH)		

(H) const. $\quad a y^{\prime \prime}+b y^{\prime}+\quad a \neq 0, b, c$ are
coeff. cy $=0$ consts.

Cauchy- $\quad a t^{2} y^{\prime \prime}+b t y ' \quad a \neq 0, b, c$ are
Euler $+c y=0$ consts.
$\mathrm{yH}(\mathrm{t})=$ general solution of (H)
$y \mathrm{P}(\mathrm{t})=$ particular solution of (NH)

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

