Cheatography

ODE not being updated Cheat Sheet by katalyst via cheatography.com/162879/cs/34104/

First order Differential Equations			
Linear	a(t)y' + b(t)y = f(t)	-	
Separable	dy/dt = g(y)	/)*h(t)	
Bernoulli	a(t)y' + b(t)y = f(t)y ^m	m≠ 0,1	
Homoge- neous	y' = g(y/t)		
Exact	M(x,y)dx + N(x,y)dy = 0	Exact if and only if the partials My and Nx are equal	
Non- Exact	M(x,y)dx + N(x,y)dy = 0	When My≠Nx	
First order DE's and their form			

Solving first order linear 1. Make sure its in normal form y' + p(t)y = q(t)2. Find an integrating factor $\mu(t) =$ e^{∫p(t)dt} 3. Multiply both sides of the $(\mu(t)y)' =$ normal form by $\mu(t)$ to get $\mu(t)q(t)$ 4. Integrate both sides of $(\mu(t)y)' = \mu(t)q(t)$ and solve for y Dont Forget constants of integration 1. Rewrite y separate th

1. Rewrite y' and dy/dt and	dy/dt
separate the variable y from	=g(y)h(t)
the variable t to get d	where we
	get
	(1/g(y)) dy
	= h(t)dt

2. Integrate both sides to obtain

Not published yet. Last updated 14th October, 2022. Page 1 of 1.

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com

Second and Higher Order DE's

Second and Higher Order DE's			
2 ND Order Linear	a(t)y" + b(t)y' + c(t)y = f(t)	Normal form y'' + p(t)y' + q(t)y = r(t)	
Homoge- neous (H)	a(t)y" + b(t)y' + c(t)y = 0	Gen. Soltn. yH(t,c1,c2)	
Non-Ho- mog- eneous (NH)	a(t)y" + b(t)y' + c(t)y = f(t)	Gen. Soltn. yH(t,c1,c2) + yp(t)	
(H) const. coeff.	ay" + by' + cy = 0	a≠0, b,c are consts.	
Cauchy- Euler	at ² y'' + bty' + cy = 0	a≠0, b,c are consts.	
yH(t) = general solution of (H)			

yP(t) = particular solution of (NH)

By katalyst

cheatography.com/katalyst/