ODE not being updated Cheat Sheet by katalyst via cheatography.com/162879/cs/34104/ | First order Differential Equations | | | |------------------------------------|------------------------------|---| | Linear | a(t)y' + b(t)y = f(t) | Normal form $y' + p(t)y = q(t)$ | | Separable | dy/dt = g(y) | v)*h(t) | | Bernoulli | $a(t)y' + b(t)y = f(t)y^{m}$ | m≠ 0,1 | | Homoge-
neous | y' = g(y/t) | | | Exact | M(x,y)dx + N(x,y)dy = 0 | Exact if and only if
the partials My and
Nx are equal | | Non-
Exact | M(x,y)dx + N(x,y)dy = 0 | When My≠Nx | | Solving first order linear | | | | |--|----------------------------|--|--| | 1. Make sure its in normal form | m y' + p(t)y $= q(t)$ | | | | 2. Find an integrating factor | $\mu(t) = e^{\int p(t)dt}$ | | | | 3. Multiply both sides of the normal form by $\mu(t)$ to get | $(\mu(t)y)' = \mu(t)q(t)$ | | | | 4. Integrate both sides of $(\mu(t)y)' = \mu(t)q(t)$ and solve for y | | | | | Dont Forget constants of integration | | | | | | | | | | Solving FO Separable DE | | | | | Rewrite y' and dy/dt and separate the variable y from | dy/dt
= $g(y)h(t)$ | | | where we (1/g(y)) dy= h(t)dt | 2 ND Order
Linear | a(t)y'' + b(t)y' + c(t)y = f(t) | Normal form y"
+ $p(t)y' + q(t)y =$
r(t) | | |--|---------------------------------|--|--| | Homoge-
neous (H) | a(t)y'' + b(t)y' + c(t)y = 0 | Gen. Soltn.
yH(t,c1,c2) | | | Non-Ho-
mog-
eneous
(NH) | a(t)y" + b(t)y' + c(t)y = f(t) | Gen. Soltn.
yH(t,c1,c2) +
yp(t) | | | (H) const. coeff. | ay" + by' +
cy = 0 | a≠0, b,c are consts. | | | Cauchy-
Euler | $at^2y'' + bty' + cy = 0$ | a≠0, b,c are consts. | | | yH(t) = general solution of (H)
yP(t) = particular solution of (NH) | | | | Second and Higher Order DE's ## By katalyst First order DE's and their form cheatography.com/katalyst/ Not published yet. Last updated 14th October, 2022. Page 1 of 1. 2. Integrate both sides to obtain the variable t to get d Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com