

ODE not being updated Cheat Sheet by katalyst via cheatography.com/162879/cs/34104/

First order Differential Equations		
Linear	a(t)y' + b(t)y = f(t)	Normal form $y' + p(t)y = q(t)$
Separable	dy/dt = g(y)	v)*h(t)
Bernoulli	$a(t)y' + b(t)y = f(t)y^{m}$	m≠ 0,1
Homoge- neous	y' = g(y/t)	
Exact	M(x,y)dx + N(x,y)dy = 0	Exact if and only if the partials My and Nx are equal
Non- Exact	M(x,y)dx + N(x,y)dy = 0	When My≠Nx

Solving first order linear			
1. Make sure its in normal form	m y' + p(t)y $= q(t)$		
2. Find an integrating factor	$\mu(t) = e^{\int p(t)dt}$		
3. Multiply both sides of the normal form by $\mu(t)$ to get	$(\mu(t)y)' = \mu(t)q(t)$		
4. Integrate both sides of $(\mu(t)y)' = \mu(t)q(t)$ and solve for y			
Dont Forget constants of integration			
Solving FO Separable DE			
Rewrite y' and dy/dt and separate the variable y from	dy/dt = $g(y)h(t)$		

where we

(1/g(y)) dy= h(t)dt

2 ND Order Linear	a(t)y'' + b(t)y' + c(t)y = f(t)	Normal form y" + $p(t)y' + q(t)y =$ r(t)	
Homoge- neous (H)	a(t)y'' + b(t)y' + c(t)y = 0	Gen. Soltn. yH(t,c1,c2)	
Non-Ho- mog- eneous (NH)	a(t)y" + b(t)y' + c(t)y = f(t)	Gen. Soltn. yH(t,c1,c2) + yp(t)	
(H) const. coeff.	ay" + by' + cy = 0	a≠0, b,c are consts.	
Cauchy- Euler	$at^2y'' + bty' + cy = 0$	a≠0, b,c are consts.	
yH(t) = general solution of (H) yP(t) = particular solution of (NH)			

Second and Higher Order DE's

By katalyst

First order DE's and their form

cheatography.com/katalyst/

Not published yet.

Last updated 14th October, 2022.

Page 1 of 1.

2. Integrate both sides to obtain

the variable t to get d

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com