expected variable

```
sample space}S\mathrm{ is equal to
```



```
The deviation of X ats s\inS is X(s)-E(X), the difference between the value of }X\mathrm{ and the
```

mean of X.
expected value of a die: $(1 / 6)^{*} 1+(1 / 6)^{\star} 2+$ $(1 / 6)^{*} 3+\ldots(1 / 6)^{*} 6=7 / 2$

expected value with large outcomes

```
If X is a random variable and p(X=r) is the probability that X=r, so that p(X=r)=
\sum ses,X(s)=r p(s), then
```


The expected number of successes when n mutually independent Bernoulli trials are performed, where p is the probability of success on each trial, is np .

Geometric Distribution

A random variable X has a geometric distribution with parameter p if $p(X=k)=$
A random variable X has a geometric distribution with parameter p if
$(1-p)^{k-1} p$ for $k=1,2,3, \ldots$, where p is a real number with $0 \leq p \leq 1$.

If random variable X has the geometric distribution with parameter p, then $E(x)=1 / p$. (expected value)

Expected value IRV

If X and Y are independent random variables on a sample space S, then $E(X Y)=E(X) E(Y)$.

Theorem

By Kalbi

cheatography.com/kalbi/

Variance

If X is a random variable on a sample space S and $E(X)=m u$, then $V(X)=E\left((X-m u)^{2}\right)$ $V(X)=E\left(X^{2}\right)-E(X)^{2}$.

Variance => how widely the values of expected value of a random value is distributed. Variance of the number of successes in n Bernoulli trials is npq, where q is $1-p$

Chebyshev's Inequality

CHEBYSHEV'S INEOLALITY Let X be a random variable on a sample space S wit probability function p. If r is a positive real number, then
$p(|X(s)-E(X)| \geq r) \leq V(X) / r^{2}$

The likelihood that a random variable takes a value far from it's expected value. This inequality provides an upper bound on the probability that the value of a random variable differs from the expected value of the random variable by more than a specified amount.

Equivalence Relation

```
# reasition.
```

If relations a and b are related by an equivalence relation, they are equivalent, denoted by $a \sim b$

Graph Terminology

TABLE 1 Graph Terminolog.			
Type	Edges	Multiple Edges Allowd?	Loops Allowed?
Simple graph	Undirected	No	No
Mulligraph	Undircted	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Dircected	Yes	Yes
Mixed graph	Dircected and undircected	Yes	Yes

\qquad

Published 17th December, 2014.
Last updated 17th December, 2014.
Page 1 of 1

Bipartite Rules for Special Simple Graphs

```
(a) For which values of n are these graphs bipartite?
```

 i) \({ }^{\text {i) }} K_{n}\)
 (i)) By the definition given in the text, K_{1} does not have enough vertices to be bipartite (the sets in a partition have to be nonempty). Clearly K_{2} is bipartite.
There is a triangle in K_{n} for $n>2$, so those complete graphs are not bipartite. There is a triangle
(See Exercise 23.)
(ii) First we meed.) since we can take one part to be every other vertex. If n is odd, then C_{n} is not (4)) Every wheel contains triangles, so no W_{n} is bipartite.
(iv)) Q_{n} is bipartite for all $n \geq 1$, since we can divide the vertices into these two
classes: those bit strings with an odd number of 1 s , and those bit strings with an even number of 1 s .

Strong vs Weak conn.

A directed graph is strongly connected if there is a path from a to b and from b to a whenever a and b are vertices in the graph.
A directed graph isweakly connected if there is a path between every two vertices in the underlying undirected graph.

Strongly connected graph is also weakly connected. Look for strong components (vertices and cycles)

Euler Circuit Rules for Spec. Graphs

```
For which values of n do these graphs have Euler Circuits?
i) Kn
```

(i)) The degrees of the vertices $(n-1)$ are even if and only if n is odd. Therefore there is an Euler circuit if and only if n is odd (and greater than 1 , of course).
(ii)) For all $n \geq 3$, clearly C_{n} has an Euler circuit, namely itself.
(iii)) Since the degrees of the vertices around the rim are all odd, no wheel has an Euler circuit.
(iv)) The degrees of the vertices are all n. Therefore there is an Euler circuit if and only if n is even (and greater than 0 , of course).
.\quad

Euler circuit

An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path
in G is a ain

A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree. It has an Euler path but not a circuit if and only if it has exactly two vertices of odd degree.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

