Cheatography

EECS 203 Exam 2 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2790/

Permutations, no repetition	Pascal's identity
If <i>n</i> and <i>r</i> are integers with $0 \le r \le n$, then $P(n, r) = \frac{n!}{(n-r)!}$.	PANCALYS IDENTITY Let <i>n</i> and <i>k</i> be positive integers with $n \ge k$. Then $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.
permutation formula, ORDER MATTERS (i.e. ways to sort 5 of 10 students in a line)	binomial coefficients, a recursive definition
Permutations, repetition	Finite probability
The number of <i>r</i> -permutations of a set of <i>n</i> objects with repetition allowed is n' .	If S is a finite momentpy sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is $\mu(E) = \frac{ E }{ S }$.
very easy, just use product rule as shown	event over sample space. event is a subset of sample space
Combinations, no repetition	Compliment of probability event
The number of <i>r</i> -combinations of a set with <i>n</i> elements, where <i>n</i> is a nonnegative integer and <i>r</i> is an integer with $0 \le r \le n$, equals $C(n, r) = \frac{n!}{r!(n-r)!}.$	Let E be an even in a sample space S . The probability of the event $\overline{E} = S - E$, the complementary event of E , is given by $\mu(\overline{E}) \equiv 1 - \mu(E)$.
$C(n,r) = \frac{1}{r!(n-r)!}$	technique to calculate some probabilities
combination formula, ORDER does NOT matter (i.e committee of 3 out of 5 students)	Probability of union of 2 events
Combinations, repetition	Let E_1 and E_2 be even in the sample space $S.$ Then $\mu(E_1\cup E_2)=\mu(E_1)+\mu(E_2)-\mu(E_1\cap E_2).$
There are $C(n + r - 1, r) = C(n + r - 1, n - 1)r$ -combinations from a set with <i>n</i> elements when repetition of elements is allowed.	useful for proving things
Bars and stars! Order does not matter, ways to select bills/fruit and place in a container C/P Quick table	Conditional Probability Let <i>E</i> and <i>F</i> be events with $p(F) > 0$. The conditional probability of <i>E</i> given <i>F</i> , denoted by $p(E F)$, is defined $p(E F) = \frac{p(E \cap F)}{p(F)}$.
TABLE 1 Combinations and Permutations With	probability of E given F E F
and Without Repetition. Type Repetition Allowed? Formula n! n!	Definition of independent event
r-permutations No $\frac{1}{(n-r)!}$ r-combinations No $\frac{n!}{(n-r)!}$	The events E and F are independent if and only if $p(E\cap F)=p(E)p(F).$
<i>r</i> -permutations Yes n^r	use for proofs
<i>r</i> -combinations Yes $\frac{(n+r-1)!}{r!(n-1)!}$	Pigeonhole Principle
quick reference	THE GENERALIZED PIGEONHOLE PRINCIPLE. If N objects are placed into k bores, then there is at least one bace containing at least $\{V k\}$ objects.
Binomial Theorem	if k is a positive integer and k+1 or more objects are placed into boxes, at least 1 box has 2+ objects
THE BINOMIAL THEOREM Let x and y be variables, and let n be a nonnegative integer. Then $(x + y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{n} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} y x^{n-1} + \binom{n}{n} y^n.$	Bernoulli trials probability of success
binomial theorem coefficient is a Combination.	The probability of exactly k successes in n independent Bernsulli triais, with probability of success p and probability of finites $q = 1 - p_c$ is $C(\mu,k)p^kq^{n-k}$.

C

By Kalbi cheatography.com/kalbi/ Published 3rd November, 2014. Last updated 3rd November, 2014. Page 1 of 2. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

EECS 203 Exam 2 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2790/

Baye's theorem

BAYES: THEOREM Suppose that *E* and *F* are events from a sample space *S* such that $p(E) \neq 0$ and $p(F) \neq 0$. Then $p(\overline{F} \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})}.$

calculate probability of i.e diseases/diagnosis, probability of spam...

By Kalbi

Published 3rd November, 2014. Last updated 3rd November, 2014. Page 2 of 2. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com