Cheatography

Permutations, no repetition
\qquadIf n and r are integers with $0 \leq r \leq n$, then $P(n, r)=\frac{n!}{(n-r)!}$
permutation formula, ORDER MATTERS (i.e. ways to sort 5 of 10 students in a line)
Permutations, repetition
The number of r-permutations of a set of n objects with repetition allowed is n^{r}.
very easy, just use product rule as shown

Combinations, no repetition
The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with $0 \leq r \leq n$, equals $C(n, r)=\frac{n!}{r!(n-r)!} .$
combination formula, ORDER does NOT matter (i.e committee of 3 out of 5 students)
Combinations, repetition
There are $C(n+r-1, r)=C(n+r-1, n-1) r$-combinations from a set with n elements when repetition of elements is allowed.
Bars and stars! Order does not matter, ways to select bills/fruit and place in a container

C/P Quick table

TABLE 1 Combinations and Permutations With and Without Repetition.		
Type	Repetition Allowed?	Formula
r-permutations	No	$\frac{n!}{(n-r)!}$
r-combinations	No	$\frac{n!}{r!(n-r)!}$
r-permutations	Yes	n^{r}
r-combinations	Yes	$\frac{(n+r-1)!}{r!(n-1)!}$

quick reference

Binomial Theorem

$$
\begin{aligned}
& (x+y)^{n}=\sum_{i=1}^{n}\binom{n}{j} x^{n-1} y^{\prime} y^{\prime}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} n^{n} .
\end{aligned}
$$

binomial theorem... coefficient is a Combination.

Pascal's identity
PASCAL'S IDENTITY Let n and k be positive integers with $n \geq k$. Then
binomial coefficients, a recursive definition
Finite probability
If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is $p(E)=\frac{\|E\|}{\|S\|}$
event over sample space. event is a subset of sample space
Compliment of probability event
Let E be an event in a sample space S. The probability of the event $\bar{E}=S-E$, the comple- $p(\bar{E})=1-p(E) .$
technique to calculate some probabilities

Conditional Probability
Let E and F be events with $p(F)>0$. The conditional probability of E given F, denoted by $p(E \mid F)$, is defined as $p(E \mid f)=\frac{p(E \cap f)}{p(F)} .$
probability of E given F E\|F
Definition of independent event
use for proofs

Bernoulli trials probability of success

```
Myyyy
    cm..s)
```


By Kalbi

cheatography.com/kalbi/

Published 3rd November, 2014.
Last updated 3rd November, 2014.
Page 1 of 2 .

Sponsored by Readability-Score.com

Measure your website readability!
https://readability-score.com

Baye's theorem

$P(F \mid E)=\frac{p(E|F| p(f)}{p(E|F| P(F)+P(E \mid \bar{F}) P(\bar{F})}$
calculate probability of i.e diseases/diagnosis, probability of spam..

By Kalbi

cheatography.com/kalbi/

Published 3rd November, 2014.
Last updated 3rd November, 2014.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

