

EECS 203 Exam 2 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2790/

Permutations, no repetition

If n and r are integers with $0 \le r \le n$, then $P(n, r) = \frac{n!}{(n-r)!}$

permutation formula, ORDER MATTERS (i.e. ways to sort 5 of 10 students in a line)

Permutations, repetition

The number of r-permutations of a set of n objects with repetition allowed is n^r .

very easy, just use product rule as shown

Combinations, no repetition

The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with $0 \le r \le n$, equals

 $C(n, r) = \frac{n!}{r!(n-r)!}.$

combination formula, ORDER does NOT matter (i.e committee of 3 out of 5 students)

Combinations, repetition

There are C(n+r-1,r) = C(n+r-1,n-1)r-combinations from a set with n elements when repetition of elements is allowed.

Bars and stars! Order does not matter, ways to select bills/fruit and place in a container

C/P Quick table

TABLE 1 Combinations and Permutations With and Without Repetition.		
Type	Repetition Allowed?	Formula
r-permutations	No	$\frac{n!}{(n-r)!}$
r-combinations	No	$\frac{n!}{r!\;(n-r)!}$
r-permutations	Yes	n^r
r-combinations	Yes	$\frac{(n+r-1)!}{r! (n-1)!}$

quick reference

Binomial Theorem

THE BINOMIAL THEOREM Let x and y be variables, and let n be a nonnegative integer. Then $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n.$

binomial theorem... coefficient is a Combination.

Pascal's identity

PASCAL'S IDENTITY Let n and k be positive integers with $n \ge k$. The $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.

binomial coefficients, a recursive definition

Finite probability

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is $p(E) = \frac{|E|}{|E|}$.

event over sample space. event is a subset of sample space

Compliment of probability event

Let E be an event in a sample space S. The probability of the event $\overline{E} = S - E$, the complementary event of E, is given by $p(\overline{E}) = 1 - p(E).$

technique to calculate some probabilities

Probability of union of 2 events

Let E_1 and E_2 be events in the sample space S. The $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2).$

useful for proving things

Conditional Probability

Let E and F be events with p(F) > 0. The conditional probability of E given F, denoted by $p(E \mid F)$, is defined as $p(E \mid F) = \frac{p(E \cap F)}{p(F)}.$

probability of E given F E|F

Definition of independent event

The events E and F are independent if and only if $v(E \cap F) = v(E)v(F)$

use for proofs

Pigeonhole Principle

THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k boxes, then there is at least one box containing at least $\{N/k\}$ objects.

if k is a positive integer and k+1 or more objects are placed into boxes, at least 1 box has 2+ objects

Bernoulli trials probability of success

The probability of exactly k successes in n independent Bernoulli trials, with probability of success p and probability of failure q = 1 - p, is $C(n, k) A A^{-\frac{1}{2}}$

.

By Kalb

cheatography.com/kalbi/

Published 3rd November, 2014. Last updated 3rd November, 2014. Page 1 of 2. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

EECS 203 Exam 2 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2790/

Baye's theorem

BAYS' THEOREM Suppose that E and F are creats from a sample-space S such that $\rho(E) \neq \emptyset \text{ and } \rho(F) \neq 0. \text{ Then}$ $\rho(F|E) = \frac{\rho(E|E)\rho(F)}{\rho(E|E)\rho(F) + \rho(E|E)\rho(F)}.$ calculate probability of i.e diseases/diagnosis, probability of spam...

By **Kalbi** cheatography.com/kalbi/

Published 3rd November, 2014. Last updated 3rd November, 2014. Page 2 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com