Cheatography

Algebra 2 Finals Cheat Sheet Cheat Sheet by justind23 via cheatography.com/21820/cs/4307/

Parent Functions

Trigonometry

Reciprocal Identitie	s
$\sin \theta = \frac{1}{\csc \theta}$	$\csc\theta = \frac{1}{\sin\theta}$
$\cos\theta = \frac{1}{\sec\theta}$	$\sec \theta = \frac{1}{\cos \theta}$
$\tan \theta = \frac{1}{\cot \theta}$	$\cot\theta = \frac{1}{\tan\theta}$
Quotient Identities	
$\frac{\sin\theta}{\cos\theta} = \tan\theta$	
$\frac{\cos\theta}{\sin\theta} = \cot\theta$	
Pythagorean Identit	ties
$\sin^2 \theta + \cos^2 \theta = 1$	
$\tan^2 \theta + 1 = \sec^2 \theta$	
$1 + \cot^2 \theta = \csc^2 \theta$	
Cofunction Identitie	s
$\sin\theta=\cos(90^\circ-\theta)$	$\cos\theta=\sin(90^\circ-\theta)$
$\tan \theta = \cot(90^\circ - \theta)$	$\cot \theta = \tan(90^\circ - \theta)$
$\sec\theta=\csc(90^\circ\!-\theta)$	$\csc\theta=\sec(90^\circ-\theta)$
Opposite Angle Ide	ntities
$\sin(-A) = -\sin A$	
$\cos(-A) = \cos(A)$	
$\tan(-A) = -\tan(A)$	

Sum and Difference identities $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \cos \alpha \beta \beta \pm \sin \alpha \sin \beta$ $\ln(\alpha \pm \beta) = \frac{1}{12} \tan \alpha \tan \beta$ Double-Angle identities $\sin 2\theta = 2\sin \theta \cos \theta$ $\cos 2\theta = -\cos^2 \theta - 1$ $\cos 2\theta = -1 - 2\sin^2 \theta$ $\ln 2\theta = \frac{2 \tan \theta}{1 - \tan^2}$ Half-Angle identities $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$ $\cos \alpha = -1$ Product Sum identities $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$ $\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$ $\sin \alpha \sin \beta = \frac{1}{2} [\sin(\alpha - \beta) - \sin(\alpha - \beta)]$ $\sin \alpha \sin \beta = \frac{1}{2} [\sin(\alpha - \beta) - \sin(\alpha - \beta)]$

Interval Notation

<u>li</u>	nterval notation	Set Notation		
C):[1, +∞)	D: $\{x x \ge 1\}$		
All quadratic functions (e.g. y = x^2) have their domain defined as:				
C):[-∞,+∞)	D: {x x all Real numbers}		
A quadratic function that opens downward with the vertex at (0,3):				
R	.:[−∞,3)	$R: \{y y \leq 3\}$		
For a quadratic function that opens upward with a vertex at (0,2):				
R	[2, +∞)	$R: \{x x \ge 2\}$		

By justind23

cheatography.com/justind23/

Parent Function	Graph	Parent Function	Graph
y = x Linear, Odd Domain: (−∞,∞)	¥ /	y= x Absolute Value, Even	
Range: (-∞,∞)		Domain: $(-\infty,\infty)$ Range: $[0,\infty)$	
End Behavior: $x \rightarrow -\infty, y \rightarrow -\infty$ $x \rightarrow \infty, y \rightarrow \infty$		End Behavior: $x \rightarrow -\infty, y \rightarrow \infty$ $x \rightarrow \infty, y \rightarrow \infty$	
y – x² Quadratic, Even	$\langle \rangle$	$y = \sqrt{x}$ Radical, Neither	1
Domain: $(-\infty,\infty)$ Range: $[0,\infty)$		Domain: [0,∞) Range: [0,∞)	
End Behavior: $x \rightarrow -\infty, y \rightarrow \infty$ $x \rightarrow \infty, y \rightarrow \infty$		End Behavior: $x \rightarrow \infty, y \rightarrow \infty$	
$y = x^3$ Cubic, Odd	P/	$y = \sqrt[3]{x}$ Cube Root, Odd	Î Î
Domain: $(-\infty,\infty)$ Range: $(-\infty,\infty)$	·	Domain: $(-\infty,\infty)$ Range: $(-\infty,\infty)$	
End Behavior: $x \rightarrow -\infty, y \rightarrow -\infty$ $x \rightarrow \infty, y \rightarrow \infty$		End Behavior: $x \rightarrow -\infty, y \rightarrow -\infty$ $x \rightarrow \infty, y \rightarrow \infty$	
$y = b^{*}, b \ge 1$	1. 1.	$y = \log_{a}(x), b \ge 1$	
Exponential, Neither	ľ/	Log, Neither	
Domain: $(-\infty,\infty)$ Range: $(0,\infty)$	······	Domain: $(0,\infty)$ Range: $(-\infty,\infty)$	
End Behavior:		End Behavior:	
$x \rightarrow -\infty, y \rightarrow 0$ $x \rightarrow \infty, y \rightarrow \infty$		$x \rightarrow 0^{\circ}, y \rightarrow -\infty$ $x \rightarrow \infty, y \rightarrow \infty$	1
$y = \frac{1}{x}$	l,	$y = \frac{1}{x^2}$ Rational (Inverse	ľ
Rational (Inverse), Odd		Squared), Even	A.
Domain: $(-\infty,0)\cup(0,\infty)$ Range: $(-\infty,0)\cup(0,\infty)$		$\begin{array}{c} \text{Domain:} \ (-\infty,0) \cup (0,\infty) \\ \text{Range:} \ (0,\infty) \end{array}$	······
End Behavior: $x \rightarrow -\infty, y \rightarrow 0$ $x \rightarrow \infty, y \rightarrow 0$		End Behavior: $x \rightarrow -\infty, y \rightarrow 0$	
		$x \rightarrow \infty, y \rightarrow 0$	
y = int(x) = [x]	· · · · ·	y = C ($y = 2$ in the graph)	1
Greatest Integer, Neither		Constant, Even	-
Domain: $(-\infty,\infty)$ Range: $\{y: y \in \mathbb{Z}\}$ (integers)		Domain: $(-\infty, \infty)$ Range: $\{y: y = C\}$	
End Behavior: $x \rightarrow -\infty, y \rightarrow -\infty$ $x \rightarrow \infty, y \rightarrow \infty$		End Behavior: $x \rightarrow -\infty, y \rightarrow C$ $x \rightarrow \infty, y \rightarrow C$	

Domain and range

Domain: The domain of a function is the set of all possible input values (often the "x" variable), which produce a valid output from a particular function. It is the set of all real numbers for which a function is mathematically defined.

Range: The range is the set of all possible output values (usually the variable y, or sometimes expressed as f(x)), which result from using a particular function.

Published 3rd June, 2015. Last updated 12th May, 2016. Page 1 of 1. Exponentials and logarithms

- Logarithmic
- y = ln x
- Exponential
- y=b^x

Unit Circle

Sponsored by Readable.com Measure your website readability! https://readable.com