

Interval Notation

Interval notation
D: $[1,+\infty)$
Set Notation
D: $\{x \mid x \geq 1\}$
All quadratic functions (e.g. $y=x^{2}$) have their domain defined as:
D: $[-\infty,+\infty)$
D: $\{x \mid x$ all Real numbers $\}$
A quadratic function that opens downward with the vertex at $(0,3)$:

$$
\mathrm{R}:[-\infty, 3)
$$

$\mathrm{R}:\{y \mid y \leq 3\}$
For a quadratic function that opens upward with a vertex at (0,2):

$$
\mathrm{R}:[2,+\infty)
$$

R: $\{x \mid x \geq 2\}$

By justind23

cheatography.com/justind23/

Parent Functions

Parent Fundion	Girph	Parent function	Graph
		$\begin{gathered} y=\|x\| \\ \text { Absolute Value, Even } \\ \text { Domain: }(-\infty, \infty) \\ \text { Range: }[0, \infty) \\ \text { End Behavior: } \\ x \rightarrow-\infty, y \rightarrow \infty \\ x \rightarrow \infty, y \rightarrow \infty \end{gathered}$	
		$y-\sqrt{x}$ Radical, Neither Domain: $[0, \infty)$ End Behavior: $x \rightarrow \infty, y \rightarrow \infty$	
		$\boldsymbol{y}=\log _{6}(x), b>\mathbf{1}$ Log, Neither Domain: $(0, \infty)\}$ Range: $(-\infty, \infty)$ End Behavior: $x \rightarrow 0^{+}, y \rightarrow-\infty$ $x \rightarrow \infty, y \rightarrow \infty$	
		$y=C$ ($\boldsymbol{y}=2$ in the graph Constant, Even Domain: $(-\infty, \infty)$ End Behavior: $x \rightarrow-\infty, y \rightarrow C$ $x \rightarrow \infty, y \rightarrow C$	

Domain and range

Domain: The domain of a function is the set of all possible input values (often the "x" variable), which produce a valid output from a particular function. It is the set of all real numbers for which a function is mathematically defined.
Range: The range is the set of all possible output values (usually the variable y, or sometimes expressed as $f(x)$), which result from using a particular function.

Published 3rd June, 2015.
Last updated 12th May, 2016.
Page 1 of 1 .

Exponentials and logarithms

Logarithmic
$y=\ln x$
Exponential
$y=b^{\wedge} x$

Sponsored by Readable.com

Measure your website readability!
https://readable.com

