Import Statement

import numpy as $n p$

Creating Arrays

\# Create a numpy array
array_1 = np. array ([92, 94, 88, 91, 87])
\# Create a numpy array from a CSV
test_2 $=$ np. genfromtxt('test_2.csv', delimiter=',')
\# Create a two-dimensional array
test_1 = np.array([92, 94, 88, 91, 87])
test_2 $=$ np. array $([79,100,86$, 93, 91])
test_3 = np.array $([87,85,72$, 90, 92])
np.array([[92, 94, 88, 91, 87],
$[79,100,86,93,91]$, [87, 85, 72, 90, 92]])

Operations with Arrays

$\operatorname{arr}=[1,2,3,4,5]$
\# Adding 3 to each entry
>>> a = np.array(arr)
>>> a_plus_3 = a + 3
\# Adding arrays
>>> a = np.array([1, 2, 3, 4,
5])
>>> b = np. array $([6,7,8,9$,
10])
>>> $c=a+b$

\# Logical Operations

>>> a = np.array ([10, 2, 2, 4,
5, 3, 9, 8, 9, 7])
>>> a >5
array([True, False, False,
False, False, False, True, True,
True, True], dtype=bool)
>>> $a[a>5]$
$\operatorname{array}([10,9,8,9,7])$
>>> $a[(a>5) \mid(a<2)]$

-> c: array([7, 9, 11, 13, 15])

By Justin1209 (Justin1209)
cheatography.com/justin1209/

```
Selecting from Arrays (1 Dimension)
a = np.array([5, 2, 7, 0, 11])
>>> a[0]
-> 5
>>> a[-1]
-> 11
>>> a[-2]
-> 0
>>> a[0:5:2]
-> *array([5, 7, 11])
>>> a[1:3]
-> array([2, 7])
>>> a[:3]
-> array([5, 2, 7])
>>> a[-3:]
-> array([7, 0, 11])
```


Selecting from Arrays (2 Dimensions)

-> Basic Procedure a [row, column] $\mathrm{a}=\mathrm{np} . \operatorname{array}([[32,15,6,9$, 14],
$[12,10,5,23$,
1],
$[2,16,13,40$,
37]1)
\# selects the first column
>>> $a[:, 0]$
-> array([32, 12, 2])
\# selects the second row
>>> $a[1,:]$
-> $\operatorname{array}([12,10,5,23,1])$
\# selects the first three
elements of the first row
>>> a[0,0:3]
-> $\operatorname{array}([32,15,6])$

Selecting Elements

np.count_nonzero (poodle_colors
== "brown")
-> returns the number of poodles with brown hair

Mean and Logical Operations (On arrays)
np. mean (array > 8)
-> returns the percentage of values in the array that meet the criteria

We can use np.mean to calculate the percent of array elements that have a certain property.

Mean over 2 Dimensional Arrays

>>> ring_toss $=$ np. array $([[1,0$, 0],
[0, 0,
1],
[1, 0,
1]])
>>> np.mean (ring_toss)
0.44 -> Overall Average
>>> np.mean (ring_toss, axis=1)
array([0.33, 0.33, 0.67]) ->
Average per row
>>> np.mean (ring_toss, axis=0)
array ([0.67, 0. , 0.67]) ->
Average per column

Dealing with Outliers

\# Sort the Dataset

np. sort (array)
-> Outliers are clearly visible now

Percentiles

$\mathrm{d}=\mathrm{np} . \operatorname{array}([1,2,3,4,4,4$,
6, 6, 7, 8, 8])
np.percentile ($\alpha, 40$)
-> 4.00

Published 28th November, 2019. Last updated 18th December, 2019.
Page 1 of 2.

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!
http://crosswordcheats.com

Shape (dimensions) of an array

The .shape attribute for NumPy arrays returns the dimensions of the array. If array has n rows $\times m$ columns, then array.shape returns (n, m).

```
Generate Normal Distribution
# Generate own Normal Distribution Set
-> np.random.normal(loc, scale, size)
loc: the mean for the normal distribution
scale: the standard deviation of the distribution
size: the number of random numbers to generate
```

68% of our samples will fall between +/-1 standard deviation of the mean
95% of our samples will fall between +/- 2 standard deviations of the mean
99.7\% of our samples will fall between +/- 3 standard deviations of the mean

Binomial Distribution

np.random.binomial (N, P, size)
$\mathrm{N}: ~ T h e ~ n u m b e r ~ o f ~ s a m p l e s ~ o r ~ t r i a l s ~$
P: The probability of success
size: The number of experiments
\#Basketball Example
Let's generate 10,000 "experiments"
$\mathrm{N}=10$ shots
$P=0.30(30 \%$ he'll get a free throw)
$->\mathrm{a}=\mathrm{np}$. random.binomial (10, 0.3, 10000)
\# Probability that he makes 4 Shots:
prob $=$ np.mean $(\mathrm{a}==4)$
The binomial distribution can help us. It tells us how likely it is for a certain number of "successes" to happen, given a probability of success and a number of trials.

By Justin1209 (Justin1209)
cheatography.com/justin1209/

Published 28th November, 2019. Last updated 18th December, 2019. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!
http://crosswordcheats.com

