Import Statement

import numpy as np

Creating Arrays

```
# Create a numpy array
array 1 = np. array([92, 94, 88,
91, 87])
# Create a numpy array from a
CSV
test_2 = np.genfromtxt('test -
2.c sv', delimi ter =',')
# Create a two-di men sional
array
test_1 = np.arr ay([92, 94, 88,
91, 87])
test 2 = np.arr ay([79, 100, 86,
test 3 = np.arr ay([87, 85, 72,
90, 92])
np.arr ay( [[92, 94, 88, 91,
87],
                   [79, 100, 86,
93, 91],
                   [87, 85, 72,
90, 92]])
```

Operations with Arrays

```
arr = [1, 2, 3, 4, 5]
# Adding 3 to each entry
>>> a = np.arr ay(arr)
>>> a_plus_3 = a + 3
# Adding arrays
>>> a = np.arr ay([1, 2, 3, 4, 5])
>>> b = np.arr ay([6, 7, 8, 9, 10])
>>> c = a + b
# Logical Operations
>>> a = np.arr ay([10, 2, 2, 4, 5, 3, 9, 8, 9, 7])
>>> a > 5
```

Operations with Arrays (cont)

> array([True, False, False, False, False, False, True, True, True, True], dtype=bool)
>>> a[a > 5]
array([10, 9, 8, 9, 7])
>>> a[(a > 5) | (a < 2)]
array([10, 9, 8, 9, 7])
-> c: array([7, 9, 11, 13, 15])

```
Selecting from Arrays (1 Dimension)

a = np.array([5, 2, 7, 0, 11])

>>> a[0]

-> 5

>>> a[-1]

-> 11

>>> a[-2]

-> 0

>>> a[0:5:2]

-> *array([5, 7, 11])

>>> a[1:3]

-> array([2, 7])

>>> a[:3]

-> array([5, 2, 7])

>>> a[-3:]

-> array([7, 0, 11])
```

Selecting from Arrays (2 Dimensions)

```
-> Basic Procedure a[row,column]
a = np.arr ay([32, 15, 6, 9,
14],
                           ſ12.
10, 5, 23, 1],
                           [2,
16, 13, 40, 37]])
# selects the first column
>>> a[:,0]
-> array([32, 12, 2])
# selects the second row
>>> a[1,:]
-> array([12, 10, 5, 23, 1])
# selects the first three
elements of the first row
>>> a[0,0:3]
-> array([32, 15, 6])
```

Selecting Elements

np.count_nonzero(poodle_colors
== "brown")
-> returns the number of poodles
with brown hair

Mean and Logical Operations (On arrays)

np.mean(array > 8)
-> returns the percentage of
values in the array that meet
the criteria

We can use **np.mean** to calculate the percent of array elements that have a certain property.

By **Justin1209** (Justin1209)

cheatography.com/justin1209/

Published 28th November, 2019. Last updated 18th December, 2019. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Mean over 2 Dimensional Arrays

Dealing with Outliers

Sort the Dataset

np.sort(array)

-> Outliers are clearly visible now

Percentiles

```
d = np.array([1, 2, 3, 4, 4, 4,
6, 6, 7, 8, 8])
np.percentile(d, 40)
-> 4.00
```

Shape (dimensions) of an array

The .shape attribute for NumPy arrays returns the dimensions of the array. If array has n rows × m columns, then array.shape returns (n, m).

Generate Normal Distribution

Generate own Normal

Distribution Set

-> np.ran dom.no rma 1(loc, scale, size)
loc: the mean for the normal distri bution
scale: the standard deviation of the distri bution

size: the number of random
numbers to generate

68% of our samples will fall between +/- 1 standard deviation of the mean

95% of our samples will fall between +/- 2 standard deviations of the mean

99.7% of our samples will fall between +/- 3 standard deviations of the mean

np.random.binomial(N, P, size)

Binomial Distribution

N: The number of samples or
trials
P: The probab ility of success
size: The number of experi ments
#Basketball Example
 Let's generate 10,000 " exp eri men ts"
 N = 10 shots
 P = 0.30 (30% he'll get a free
throw)
-> a = np. random.bi nomial/10,
0.3, 10000)
Probab ility that he makes 4
Shots:
prob = np.mean(a == 4)

The binomial distribution can help us. It tells us how likely it is for a certain number of "successes" to happen, given a probability of success and a number of trials.

C

By Justin1209 (Justin1209) cheatography.com/justin1209/

Published 28th November, 2019. Last updated 18th December, 2019. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com