
PLSQL Cheat Sheet
by juliosueiras via cheatography.com/23055/cs/6461/

Function

CREATE OR REPLACE
FUNCTION function_name
(param​eter_1 data_type,
Parame​ter_2 data_type)
RETURN data_type
{ IS | AS }
[decla​rat​ion​_se​‐
ction]
BEGIN
execut​abl​e_s​ection
[EXCEPTION
except​ion​_se​ction]
END [funct​ion​_name];

Procedures

Create [or REPLACE]
PROCEDURE procedure_name
(
parame​ter​_name_1
data_type,
parame​ter​_name_2
data_type
)
{ IS | AS }
pl_sql​_block
Parameter
By position
By name

Packages

CREATE PACKAGE
package_name { IS | AS }
proced​ure​_or​_fu​nct​‐
ion​_sp​eci​fic​ati​‐
on_1;

Packages (cont)

> proced​ure​_or​_fu​nct​ion​_sp​eci​‐
fic​ati​on_2;
END [packa​ge_​name];
Package body
CREATE PACKAGE BODY
packag​e_name { IS | AS }
proced​ure​_or​_fu​nct​ion​_bo​dy_1;
proced​ure​_or​_fu​nct​ion​_bo​dy_2;
END [packa​ge_​name];

Bind variable

Need to specify type

Need to wrap around quote
when assign string value

No need quote when reference
the variable

Value can only be assigned in a
PL, via exec or Begin / End
block

Use PRINT to list out bind
variable

Condit​ional and Loops

Declare and use of
variable
%TYPE %ROWTYPE
VARCHAR2 NUMBER DATE
Assignment operator :=
Nested block variable
scope
DECLARE
myvar number;
BEGIN
myvar:=1;

Condit​ional and Loops (cont)

> dbms_o​utp​ut.p​ut​_li​ne(​myvar);
DECLARE
myvar number;
BEGIN
myvar:=2;
dbms_o​utp​ut.p​ut​_li​ne(​myvar);
END;
dbms_o​utp​ut.p​ut​_li​ne(​myvar);
END;
IF THEN ELSE END IF
DECLARE
v_number NUMBER;
BEGIN
IF v_numb​er<=0 THEN
dbms_o​utp​ut.p​ut​_li​ne('it is less
than 0');
ELSIF v_numb​er>=0 THEN
dbms_o​utp​ut.p​ut​_li​ne('it is
greater than 0');
ELSE
dbms_o​utp​ut.p​ut​_li​ne('not either
of the case');
END IF;
END;
Loops
FOR IN .. LOOP
{state​ments};
END LOOP;
WHILE condition
LOOP

Condit​ional and Loops (cont)

> {state​ments};
END LOOP;
LOOP
{state​mens};
EXIT WHEN condition;
CONTINUE WHEN condition;
END LOOP;
Loops
DECLARE
i NUMBER :=10;
BEGIN
FOR i IN 1..5 LOOP
dbms_o​utp​ut.p​ut​_li​ne(i);
END LOOP;
dbms_o​utp​ut.p​ut​_li​ne(i);
END;
CASE – Simple Case
CASE expression
WHEN value_1 THEN
..
WHEN value_2 THEN
ELSE
END CASE;
CASE – Searched Case
WHEN boolea​n_e​xpr​ession
THEN
ELSE
END CASE;

By juliosueiras

cheatography.com/juliosueiras/

Published 17th December, 2015.
Last updated 12th May, 2016.
Page 1 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/juliosueiras/
http://www.cheatography.com/juliosueiras/cheat-sheets/plsql
http://www.cheatography.com/juliosueiras/
https://readable.com

PLSQL Cheat Sheet
by juliosueiras via cheatography.com/23055/cs/6461/

Function vs Procedures

Function must return a value.
Procedure can not return a value

Function and procedure can
both return data in OUT and IN
OUT parameters

Function can be called from
SQL, but not for procedure

Can not perform a DML DDL
within function, while allowed in
procedure

Trigger

CREATE [OR REPLACE]
TRIGGER trigger_name
BEFORE | AFTER
[INSERT, UPDATE, DELETE
[COLUMN NAME..]
ON table_name
Refere​ncing [OLD AS
OLD | NEW AS NEW]
FOR EACH ROW | FOR EACH
STATEMENT [WHEN
Condition]
DECLARE
[decla​rat​ion​_se​‐
ction]
BEGIN
[execu​tab​le_​sec​tion]
EXCEPTION
[excep​tio​n_s​ection]
END;

Substi​tution variable

No need to specify type, as it is
always character type

No need to wrap around quote
when assign value

Need quote when reference the
variable

ACCEPT implicitly defined a
substi​tution type variable

Use DEFINE to list out substi​‐
tution variable

Procedures Parts

S.N. Parts & Descri​ption

1 Declar​ative Part It is an
optional part. However,
the declar​ative part for a
subprogram does not
start with the DECLARE
keyword. It contains
declar​ations of types,
cursors, constants,
variables, except​ions,
and nested subpro​‐
grams. These items are
local to the subprogram
and cease to exist when
the subprogram
completes execution.

2 Executable Part This is a
mandatory part and
contains statements that
perform the designated
action.

Procedures Parts (cont)

3 Except​ion​-ha​ndling This is
again an optional part. It
contains the code that
handles run-time errors.

Parameter Modes in PL/SQL
Subpro​grams

S.N. Parts & Descri​ption

1 IN An IN parameter lets
you pass a value to the
subpro​gram. It is a read-
only parameter. Inside
the subpro​gram, an IN
parameter acts like a
constant. It cannot be
assigned a value. You
can pass a constant,
literal, initia​lized variable,
or expression as an IN
parameter. You can also
initialize it to a default
value; however, in that
case, it is omitted from
the subprogram call. It is
the default mode of
parameter passing.
Parameters are passed
by reference.

Parameter Modes in PL/SQL
Subpro​grams (cont)

2 OUT An OUT parameter
returns a value to the calling
program. Inside the subpro​‐
gram, an OUT parameter
acts like a variable. You can
change its value and
reference the value after
assigning it. The actual
parameter must be variable
and it is passed by value.

3 IN OUT An IN OUT
parameter passes an initial
value to a subprogram and
returns an updated value to
the caller. It can be assigned
a value and its value can be
read. The actual parameter
corres​ponding to an IN OUT
formal parameter must be a
variable, not a constant or
an expres​sion. Formal
parameter must be assigned
a value. Actual parameter is
passed by value.

Packages Code Example

CREATE OR REPLACE
PACKAGE roppkg AS
 ​PRO​CEDURE ropmall
(pi_city varchar2
default 'Missi​ssa​uga',

By juliosueiras

cheatography.com/juliosueiras/

Published 17th December, 2015.
Last updated 12th May, 2016.
Page 2 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/juliosueiras/
http://www.cheatography.com/juliosueiras/cheat-sheets/plsql
http://www.cheatography.com/juliosueiras/
https://readable.com

PLSQL Cheat Sheet
by juliosueiras via cheatography.com/23055/cs/6461/

Packages Code Example (cont)

> ​pi_mall varchar2,
 ​pi_​cit​y_code out varchar2) ;
FUNCTION roppop
(pi_city varchar2 defaul​t'M​iss​iss​‐
auga')
RETURN NUMBER ;
END;
CREATE OR REPLACE
PACKAGE BODY roppkg AS
 ​PRO​CEDURE ropmall
(pi_city varchar2 default 'Missi​‐
ssa​uga',
 ​pi_mall varchar2,
 ​pi_​cit​y_code out varchar2)
AS
 ​l_cnt NUMBER;
 ​l_cid number;
BEGIN
 ​SELECT count(1) INTO l_cnt
from
 mall a
 ​WHERE
 ​a.m​all​_na​me=​pi_mall
 ​ ;
 IF l_cnt = 0
 THEN
 ​ ​ ​SELECT cid into l_cid
 ​ ​ FROM rop
 ​ ​ ​WHERE CITY=p​i_city;

 ​ ​ ​INSERT INTO mall VALUES
(l_cid, pi_mall);

Packages Code Example (cont)

> END IF;
 ​COMMIT;
 ​pi_​cit​y_c​ode​:=l​_cid;
END;
FUNCTION roppop
(pi_city varchar2 defaul​t'M​iss​iss​‐
auga')
RETURN NUMBER AS
 ​l_pop NUMBER;
BEGIN
 ​SELECT population INTO l_pop
from
 rop WHERE city=p​i_city;
 ​RETURN l_pop;
END;
END;

Function Example

CREATE or REPLACE
FUNCTION roppop
(pi_city varchar2)
RETURN NUMBER AS
 ​l_pop NUMBER;
BEGIN
 ​SELECT population INTO
l_pop from
 rop WHERE city=p​‐
i_city;
 ​RETURN l_pop;
END;

Procedures Example

CREATE or REPLACE
PROCEDURE ropmall
(pi_city varchar2
default 'Missi​ssa​uga',
 ​pi_mall varchar2,
 ​pi_​cit​y_code out
varchar2)
AS
 ​l_cnt NUMBER;
 ​l_cid number;
BEGIN
 ​dbm​s_o​utp​ut.p​ut​‐
_li​ne(​nvl​(pi​_ci​‐
ty_​cod​e,'​NUL​L'));

 ​SELECT count(1) INTO
l_cnt from
 mall a
 ​WHERE
 ​a.m​all​_na​me=​‐
pi_mall
 ​ ;
 IF l_cnt = 0
 THEN
 ​ ​ ​SELECT cid into
l_cid
 ​ ​ FROM rop
 ​ ​ ​WHERE CITY=p​‐
i_city;

 ​ ​ ​INSERT INTO mall
VALUES (l_cid, pi_mall);
 END IF;
 ​COMMIT;
 ​pi_​cit​y_c​ode​:=l​‐
_cid;
END;

By juliosueiras

cheatography.com/juliosueiras/

Published 17th December, 2015.
Last updated 12th May, 2016.
Page 3 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/juliosueiras/
http://www.cheatography.com/juliosueiras/cheat-sheets/plsql
http://www.cheatography.com/juliosueiras/
https://readable.com

	PLSQL Cheat Sheet - Page 1
	Function
	Bind variable
	Procedures
	Condit­ional and Loops
	Packages

	PLSQL Cheat Sheet - Page 2
	Function vs Procedures
	Substi­tution variable
	Parameter Modes in PL/SQL Subpro­grams
	Trigger
	Procedures Parts
	Packages Code Example

	PLSQL Cheat Sheet - Page 3
	Procedures Example
	Function Example

