

Probability Theory Cheat Sheet by Julia22 via cheatography.com/191398/cs/39786/

Measure Theory

Classes of sets

Definition1.1(σ-algebra):A class of sets $A \subseteq 2\Omega$ if it fulfils the following three conditions: (i) $\Omega \in A$. (ii) A is closed under complements. (iii) A is closed under countable unions.

Defitinition1.2(algebra): A class of sets $A \subseteq 2\Omega$ is called an algebra if the following three conditions are fulfilled: (i) $\Omega \in A$. (ii) A is \-closed. (iii) A is \-closed.

Definition 1.3(ring):A class of sets $A \subseteq 2\Omega$ is called a ring if the following three conditions hold: (i) $\emptyset \in A$. (ii) A is \-closed. (iii) A is \-closed. A ring is called a σ -ring if it is also σ -\-closed

Definition 1.4(semiring): A class of sets A \subseteq 2Ω is called a semiring if (i) $\emptyset \in$ A, (ii) for any two sets A, B \in A the difference set B \ A is a finite union of mutually disjoint sets in A, (iii) A is ∩-closed.

Definition 1.5(Dynkin-system): A class of sets A \subseteq 2Ω is called a λ-system (or Dynkin's λ-system) if (i) Ω ∈ A, (ii) for any two sets A, B ∈ A with A \subseteq B, the difference set B \ A is in A, and (iii) \uplus_{∞} n=1 An ∈ A for any choice of countably many pairwise disjoint sets A1, A2, . . . ∈ A.

Definition 1.6 (liminf & limsup):Let A1, A2, . . . be subsets of Ω. The sets lim inf $n \rightarrow \infty$ An := $\infty \cup n=1$ $\infty \cap m=n$ Am and lim sup $n \rightarrow \infty$ An := $\infty \cap n=1$ $\infty \cup m=n$ Am are called limes inferior and limes superior, respectively, of the sequence (An) $n \in \mathbb{N}$.

Theorem 1.1(Intersection of classes of sets):Let I be an arbitrary index set, and assume that Ai is a σ -algebra for every $i \in I$. Hence the intersection AI := {A $\subseteq \Omega$: A \in Ai for every $i \in I$ } = \cap i \in I Ai is a σ -algebra. The analogous statement holds for rings, σ -rings, algebras and λ - systems. However, it fails for semirings

Theorem 1.2 (Generated σ-algebra):Let E ⊆ 2Ω . Then there exists a smallest σ-algebra σ(E) with E ⊆ σ(E): σ (E) := \cap A⊆2Ω is a σ-algebra A⊃E A.

Theorem 1.3(n-closed λ-system):Let D \subseteq 2 Ω be a λ-system. Then D is a π -system \iff D is a σ -algebra.

Theorem 1.4(Dynkin's π-λ theorem): If $E \subseteq 2\Omega$ is a π-system, then $\sigma(E) = \delta(E)$.

Definition 1.7(Topology): Let $\Omega = \emptyset$ be an arbitrary set. A class of sets $\tau \subseteq \Omega$ is called a topology on Ω if it has the following three properties: (i) \emptyset , $\Omega \in \tau$. (ii) A \cap B $\in \tau$ for any A, B $\in \tau$. (iii) (\cup A \in F A) $\in \tau$ for any F $\subseteq \tau$. The pair (Ω , τ) is called a **topological space**. The sets A $\in \tau$ are called open, and the sets A $\subseteq \Omega$ with Ac $\in \tau$ are called closed.

Definition 1.8(Borel σ-algebra):Let (Ω, τ) be a topological space. The σ- algebra $B(\Omega) := B(\Omega, \tau) := \sigma(\tau)$ that is generated by the open sets is called the Borel σ-algebra on Ω . The elements $A \in B(\Omega, \tau)$ are called Borel sets or Borel measurable sets.

Definition 1.8 (**Trace of a class of sets**):Let A ⊂ 2Ω be an arbitrary class of subsets of Ω and let A ∈ 2Ω \ {∅}. The class A| |A := {A ∩ B : B ∈ A} ⊂ 2A is called the trace of A on A or the restriction of A to A.

Set Functions

Set Functions (cont)		
σ-finite	if there exists a sequence of sets $\Omega 1,\Omega 2,\ldots\in A$ such that Ω = ∞U n=1 Ωn and such that $\mu(\Omega n)<\infty$ for all $n\in N.$	
Examples		
Dirac measure	Let $\omega \in \Omega$ and $\delta \omega$ (A) = 1A(ω) . Then $\delta \omega$ is a probability measure on any σ -algebra A \subseteq 2Ω . $\delta \omega$ is called the	
uniform distri- bution	Let Ω be a finite nonempty set. By $\mu(A) := \#A \#\Omega$ for $A \subseteq \Omega$, we define a probability measure on $A = 2\Omega$	

Let $A\subseteq 2\Omega$ and let $\mu:A\to [0,\infty]$ be a set function. We say that μ is		
monoton	$\mu(A) \le \mu(B)$ for any two sets $A, B \in A$ with $A \subseteq B$,	
additiv	if μ ($n \cup i=1$ Ai) = $n \sum i=1$ μ (Ai) for any choice of finitely many mutually disjoint sets A1, , An \in A with $n \cup i=1$ Ai \in A,	
σ-additive	if μ ($\infty \cup$ i=1 Ai) = $\infty \sum$ i=1 μ (Ai) for any choice of countably many mu- tually disjoint sets A1, A2, \in A with $\infty \cup$ i=1 Ai \in A,	
subadditive	if for any choice of finitely many sets A, A1, , An \in A with A \subset nU i=1 Ai, we have $\mu(A) \le n\sum i=1 \mu(Ai)$, and	
σ-suba- dditive	if for any choice of countably many sets A, A1, A2, \in A with A $\subset \infty \cup$ i=1 Ai, we have $\mu(A) \le \infty \sum_{i=1}^{\infty} \mu(Ai)$	
Let A be a semiring and let $\mu: A \to [0, \infty]$ be a set function with $\mu(\varnothing)$ = 0. μ is called a		
content	if μ is additive,	
premeasure	if μ is σ -additive,	
measure	if μ is a premeasure and A is a $\sigma\text{-algebra}$	
probability measure	if μ is a measure and $\mu(\Omega)$ =	
Let A be a semiring. A content $\boldsymbol{\mu}$ on A is called		
finite	if $\mu(A) \le \infty$ for every $A \in A$	

By Julia22 cheatography.com/julia22/

Not published yet. Last updated 15th August, 2023. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com