Cheatography

Measure Theory

Classes of sets

Definition1.1(σ -algebra): A class of sets A \subset 2 Ω if it fulfils the following three conditions: (i) $\Omega \in A$. (ii) A is closed under complements. (iii) A is closed under couplements.

Defitinition1.2(algebra): A class of sets $A \subseteq 2\Omega$ is called an algebra if the following three conditions are fulfilled: (i) $\Omega \in A$. (ii) A is \-closed. (iii) A is \cup -closed

Definition 1.3(ring): A class of sets A \subseteq 2 Ω is called a ring if the following three condi- tions hold: (i) $\emptyset \in$ A. (ii) A is \-closed. (iii) A is U-closed. A ring is called a σ -ring if it is also σ -U-closed

Definition 1.4(semiring): A class of sets $A \subseteq 2\Omega$ is called a semiring if (i) $\emptyset \in A$, (ii) for any two sets A, $B \in A$ the difference set $B \setminus A$ is a finite union of mutually disjoint sets in A, (iii) A is \cap -closed.

Definition 1.5(Dynkin-system): A class of sets $A \subseteq 2\Omega$ is called a λ -system (or Dynkin's λ -system) if (i) $\Omega \in A$, (ii) for any two sets A, $B \in A$ with A $\subseteq B$, the difference set $B \setminus A$ is in A, and (iii) $\bigcup_{\alpha} n=1$ An $\in A$ for any choice of countably many pairwise disjoint sets A1, A2, ... $\in A$.

Definition 1.6 (liminf & limsup):Let A1, A2, . . . be subsets of Ω . The sets lim inf $n \rightarrow \infty$ An := $\infty \cup n=1 \infty \cap m=n$ Am and lim sup $n \rightarrow \infty$ An := $\infty \cap n=1 \infty \cup m=n$ Am are called limes inferior and limes superior, respectively, of the sequence (An) $n \in \mathbb{N}$.

Theorem 1.1 (Intersection of classes of sets):Let I be an arbitrary index set, and assume that Ai is a σ -algebra for every $i \in I$. Hence the intersection AI := {A $\subset \Omega$: A \in Ai for every $i \in I$ } = $\cap i \in I$ Ai is a σ -algebra. The analogous statement holds for rings, σ -rings, algebras and λ - systems. However, it fails for semirings

Theorem 1.2 (Generated σ -algebra):Let $E \subseteq 2\Omega$. Then there exists a smallest σ -algebra $\sigma(E)$ with $E \subseteq \sigma(E)$: $\sigma(E) := \cap A \subseteq 2\Omega$ is a σ -algebra $A \supseteq E$.

Theorem 1.3(**∩-closed λ-system**):Let $D \subseteq 2\Omega$ be a λ-system. Then D is a π-system \Leftrightarrow D is a σ-algebra.

Theorem 1.4(Dynkin's π-λ theorem): If $E \subseteq 2\Omega$ is a π-system, then $\sigma(E) = \delta(E)$.

Definition 1.7(Topology): Let $\Omega = \emptyset$ be an arbitrary set. A class of sets $\tau \subset \Omega$ is called a topology on Ω if it has the following three properties: (i) \emptyset , $\Omega \in \tau$. (ii) $A \cap B \in \tau$ for any $A, B \in \tau$. (iii) ($\cup A \in F A$) $\in \tau$ for any $F \subset \tau$. The pair (Ω, τ) is called a **topological space**. The sets $A \in \tau$ are called open, and the sets $A \subset \Omega$ with $Ac \in \tau$ are called closed.

Definition 1.8(Borel σ-algebra):Let (Ω, τ) be a topological space. The σ- algebra $B(\Omega) := B(\Omega, \tau) := \sigma(\tau)$ that is generated by the open sets is called the Borel σ-algebra on Ω . The elements $A \in B(\Omega, \tau)$ are called Borel sets or Borel measurable sets.

Definition 1.8 (Trace of a class of sets): Let $A \subseteq 2\Omega$ be an arbitrary class of subsets of Ω and let $A \in 2\Omega \setminus \{\emptyset\}$. The class $A \mid |A := \{A \cap B : B \in A\} \subseteq 2A$ is called the trace of A on A or the restriction of A to A.

Set Functions

Set Functions (cont)

σ-finite	$ \begin{split} & \text{if there exists a sequence of} \\ & \text{sets } \Omega 1, \Omega 2, \ldots \in A \text{ such that } \Omega \\ & = {}_{\infty} \cup n{=}1 \Omega n \text{ and such that} \\ & \mu(\Omega n) < {}_{\infty} \text{ for all } n \in N. \end{split} $
Examples	
Dirac measure	Let $\omega \in \Omega$ and $\delta \omega$ (A) = 1A(ω). Then $\delta \omega$ is a probability measure on any σ -algebra A \subset 2 Ω . $\delta \omega$ is called the
uniform distri- bution	Let Ω be a finite nonempty set. By $\mu(A) := #A \#\Omega$ for $A \subset \Omega$, we define a probability measure on $A = 2\Omega$

Let A ⊂ 2Ω ar function. We s	nd let μ : $A \rightarrow [0, \infty]$ be a set	
monoton	$\mu(A) \le \mu(B)$ for any two sets A, B \in A with A \subset B,	
additiv	$\label{eq:product} \begin{array}{l} \text{if } \mu \ (\ n \cup \ i = 1 \ Ai \) = n \sum \ i = 1 \\ \mu(Ai) \ \text{for any choice of finitely} \\ \text{many mutually disjoint sets} \\ A1, \ldots, An \in A \ \text{with } n \cup \ i = 1 \\ Ai \in A, \end{array}$	
σ-additive	$\begin{array}{l} \text{if } \mu \left(\begin{array}{c} \varpi \forall \ i=1 \ Ai \end{array} \right) = \infty \sum i=1 \\ \mu(Ai) \ \text{for any choice of} \\ \text{countably many mu- tually} \\ \text{disjoint sets A1, A2, } \ldots \in A \\ \text{with } \infty \cup i=1 \ Ai \in A, \end{array}$	
subadditive	$ \begin{array}{l} \text{if for any choice of finitely} \\ \text{many sets A, A1, \ldots, An } \in A \\ \text{with } A \subset n \cup i = 1 \text{ Ai, we have} \\ \mu(A) \leq n \sum i = 1 \mu(Ai), \text{ and} \end{array} $	
σ-suba- dditive		
Let A be a semiring and let $\mu : A \rightarrow [0, \infty]$ be a set function with $\mu(\emptyset) = 0$. μ is called a		
content	if µ is additive,	
premeasure	if μ is σ -additive,	
measure	if μ is a premeasure and A is a $\sigma\text{-algebra}$	
probability measure	if μ is a measure and $\mu(\Omega)$ = 1	
Let A be a semiring. A content $\boldsymbol{\mu}$ on A is called		

 $\label{eq:horizontal} \text{finite} \qquad \quad \text{if } \mu(A) < \infty \text{ for every } A \in A$

By Julia22

cheatography.com/julia22/

Not published yet. Last updated 15th August, 2023. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com