Cheatography

AP Bio Unit 3: Cell Energetics Cheat Sheet

by julescrisfulla via cheatography.com/122651/cs/22886/

Enzymes

proteins (and RNA)

organic catalysts that lower the required activation energy to get reactants to products

facilitate chemical reactions:

- $^{\sim}$ increase rate of reaction without being consumed
- ~ reduce activation energy
- ~ do not change free energy released or required

substrate:

- ~ reactant which binds to enzyme
- ~ enzyme-substrate complex: temporary association

product:

~ end result of reaction

active site:

~ enzyme's catalytic site: substrate fits into actives site

рΗ

changes in pH:

- ~ adds or removes H+
- ~ disrupts bond, disrupts 3D shape
- ~ disrupts attractions between charged amino acids
- ~ affects 2' and 3' structure
- ~ denatures protein

Activators	
cofactors:	coenzymes:
small, inorganic compounds and ions	organic compounds
binds with enzyme	bind to enzymes near active site
Mg, K, Ca, Zn, Fe	vitamins (NAD, FAD, Coenzyme A)

Allosteric Regulation

conformational changes by regulatory molecules

inhibitors: keeps enzyme in inactive form activators: keeps enzyme in active form

Metabolic Pathways

catabolic pathways:	metabolic pathways:
release energy	consume energy
cellular respiration	photosynthesis

Transformation of Energy

sunlight -> chemical bonds during photosynthesis

Exergonic vs. Endergonic Reactions

	exergonic:	enderg- onic:
positive / negative G free energy:	negative	positive
released / absorbed	released	absorbed
cellular respir- ation / photosynt- hesis	cellular respiration	photos- ynthesis
uphill / downhill	downhill	uphill
spontaneous	sponta- neous	not sponta- neous

Endotherms

regulate internal body temperatures through metabolism

balancing heat loss and gain

five adaptations help animals thermoregulate:

- 1) insulation
- 2) circulating adaptations
- 3) cooling by evaporative heat loss
- 4) behavioral responses
- 5) adjusting metabolic heat production

Overview of Photosynthesis

Glycolysis

location:	cytoplasm
reactants:	~ glucose
	~ 2 ADP +2 Pi
	~ 2 NAD+
products:	~ 2 pyruvate
	~ 2 ATP
	~ 2 NADH
	~ 2 H2O
transfer of energy:	NADH (electrons and Hydrogen) <- C6H12O6 -> ATP
purpose:	~ convert glucose to pyruvate
	~ initial breakdown of sugar
	~ generating ATP
	~ shuttling e- and H+ to ETC

REDOX Reactions

molecular exchange of an electron

oxidation: lose electrons reduction: gain electrons

By julescrisfulla

Published 18th May, 2020. Last updated 18th May, 2020. Page 1 of 5. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/julescrisfulla/

Cheatography

AP Bio Unit 3: Cell Energetics Cheat Sheet

by julescrisfulla via cheatography.com/122651/cs/22886/

REDOX reactions image

Photosynthesis

transformation of solar light energy trapped by chloroplasts into chemical bond energy stored in sugar and other organic molecules

- 1) synthesizes energy rich molecules
- 2) uses CO2 as carbon source
- 3) directly or indirectly supplies energy

CO2 + H2O + sunlight -> C6H12O6 + O2

Steps of Light Reactions

- 1) H2O splits
- ~ H+: pump into thylakoid out of ATP synthase
- ~ e-: 2 ETCs
- ~ O2: released out of stomata
- 2) light excites e- in Photosystem II
- 3) e- to primary electron acceptor (PEA)
- 4) the e- travels down the ETC and replaces the e- from Photosystem I
- 5) the e- travels down another ETC and combines with NAHP+

meanwhile...

- ~ energy from 1st ETC is used to pump H+ into the thylakoid space
- ~ a proton gradient forms and H+ leave through ATP synthase
- ~ H+ combines with e- and NADP+ to form NADPH
- ~ ATP synthase generates ATP

By julescrisfulla

C

cheatography.com/julescrisfulla/

Properties of Enzymes

reaction specific:

- ~ each enzyme works with a specific substrate chemical fit between active site and substrate
- ~ H bonds and ionic bonds

not consumed in reaction:

- ~ single enzyme molecule can catalyze thousands or more reactions per second
- ~ enzymes are unaffected by the reaction affected by cellular conditions
- ~ ex: temperature, pH, salinity, etc.

Substrate Concentration

as substrates increase, reaction rate increases and levels off

more substrate = more frequently collide with enzyme

the reaction levels off because...

- ~ all enzymes have active site engaged
- ~ enzyme is saturated
- ~ maximum rate of reaction

Factors that Affect Enzyme Structure

Competitive Inhibitors

inhibitor competes with active site

substrate cannot bond

can overcome with substrate saturation penicillin (competes with bacterial enzyme that builds cell wall)

directly blocks active site

Published 18th May, 2020. Last updated 18th May, 2020. Page 2 of 5.

Energy

the ability to do work

kinetic

potential energy:

energy:

energy of energy of position

motion

heat water behind a dam

light energy chemical energy stored in

cells

Free Energy and Equilibrium

free energy: energy available to do work free energy decreases when reactions proceed toward equilibrium

Biosynthesis

building complex molecules out of simple molecules

amino acids -> proteins

glucose -> glycogen

Endotherms

regulate internal body temperatures through metabolism

balancing heat loss and gain

five adaptations help animals thermoregulate:

- 1) insulation
- 2) circulating adaptations
- 3) cooling by evaporative heat loss
- 4) behavioral responses
- 5) adjusting metabolic heat production

Ectotherms

do not regulate internal body temperature rely on environmental heat sources

less respiration/food

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

AP Bio Unit 3: Cell Energetics Cheat Sheet

by julescrisfulla via cheatography.com/122651/cs/22886/

Cellular Respiration

catabolic

C6H12O6 + O2 -> CO2 + H2O + energy

steps:

- 1) gylcolysis
- 2) intermediate step
- 3) citric acid cycle
- 4) oxidative phosphorylation

Intermediate Step

location: mitochondrial matrix

reactants: 2 pyruvate

products: ~ acetyl CoA

~ 2 NADH

~ 2 CO2

transfer of pyruvate (sugar) -> NADH (e-

energy: and H+)

purpose: convert pyruvate into more

reactive Acetyl CoA

Oxidative Phosphorylation

location: ~ inner membrane of mitoch-

ondria (ETC)

~ inner membrane spare

(chemiosmosis)

reactants: ~ NADH

~ FADH2

~ ADP+P

~ 02

products: ~ NAD+H

~ FAD+H

~ ATP

~ H2O

transfer

of

NADH/FADH2 -> proton gradient -> ATP synthase ->

energy: ATP

Oxidative Phosphorylation (cont)

purpose: use REDOX reactions to make a large amount of ATP (34)

producers

autotrophic nutritional: nutritional made of synthesizing organic molecules from inorganic raw materials

photoautotrophs: uses light energy chemoautotrophs: oxidation of inorganics for energy

Chloroplast

site of photosynthesis

double membrane system

thylakoids: flattened photocenters

granum: stacks of thylakoids stroma: fluid outside thylakoid

Calvin Cycle

location: stomata

production of sugar

recognition of RUBP

reactants: CO2, NADPH, ATP

products: C6H12O6, NADP+, ADP+Pi, G3P

Pathways of Photosynthesis

noncyclic photophosphorylation produces ATP and NADPH

cyclic photophosphorylation is ATP production

calvin cycle consumes more ATP than NADPH

C3 vs. C4 vs. CAM plants

Induced Fit

"lock and key"

3-D structure of enzyme fits substrate substrate binding cause enzyme to change shape leading to a tighter fit

"conformational change": slight change in shape

bring chemical groups in position to catalyze reactions

Enzyme Concentration

as enzymes increase, reaction rate increases

more enzymes = more frequently collide with substrates

Temperature

optimum temperature:

~ as temp increases, reaction rate increases

~ greater number of molecular collisions

cold temperature:

~ molecules move slower

~ decrease collisions between enzymes and substrates

heat (beyond optimum)

~ increased energy level disrupts weak bond in 2' and 3'

structure

~ denaturation: loses 3D shape

By julescrisfulla

Published 18th May, 2020. Last updated 18th May, 2020. Page 3 of 5.

cheatography.com/julescrisfulla/

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Cheatography

AP Bio Unit 3: Cell Energetics Cheat Sheet

by julescrisfulla via cheatography.com/122651/cs/22886/

Noncompetitive Inhibitors

inhibitor binds to allosteric site (not active site) which changes the shape of the active site

ex: anti-cancer drugs, cyanide, poisoning, DDT

Competitive vs. Noncompetitive Inhibitors

Thermodynamics

study of energy transformation

first law: energy of the universe is constant second law: every process increases the entropy of the universe

entropy: "quantity of energy in universe is constant, but quality is not"

ATP Powers Cellular Work

coupling endergonic/exergonic reactions energy coupling: phosphorylated intermediates; regeneration of ADP to ATP

- 3 main types of work
- 1) mechanical work (motor protein)
- 2) transport work (Na/K pump)
- 3) chemical work

Size and Metabolic rate

larger mammals have more body mass and require more chemical energy (higher BMR) smaller animals require more kcal/gram, have greater rate of O2 delivery, higher breathing rate

increase activity -> increase metabolic rate -> more ATP

Overview of Cellular Respiration

Citric Acid Cycle

mitochondrial matrix location:

reactants: ~ acetyl CoA

~ citric acid

~ ADP + Pi

~ NAD+ and FAD

products: ~ oxaloacetate

~ ATP

~ NADH and FADH2

~ CO2

NADH and FADH2 (e- and H+) transfer of

energy: <- citric acid -> ATP

purpose: ~ complete the oxidation of

glucose

~ producing NADH/FADH2 (e-

and H+)

~ ATP

Phosphorylation

substrate-level: ATP is synthesized by enzymes

oxidative: ATP is synthesized by an ETC and chemiosmosis

Fermentation

anaerobic process (no O2)

produces small amounts of ATP

regenerates NAD+/NADH

alcoholic fermentation

~ yeast/bacteria

Fermentation (cont)

~ produces CO2 and alcohol

lactic acid

- ~ human muscles
- ~ yogurt
- ~ produces lactic acid

Consumers

heterotrophs: acquire organics to create energy from other creatures

- ~ consumers
- ~ decomposers

Light Reactions

occurs in the thylakoid

splitting of water

generation of ATP and NADPH

reactants: H2O, NADP+, ADP+Pi

products: O2, NADPH, ATP

Steps of Calvin Cycle

- 1) carbon fixation
- ~ ribulose biphosphate: RuBP
- ~ rubisco: RuBP carboxylase: most abundant protein
- 2) reduction
- ~ adding H+ and e- from NADPH to CO2 to make sugar
- 3) regeneration
- ~ G3P -> RuBP

Alternative Pathways of Carbon Fixation

photorespiration: fixing oxygen rather than CO2

СЗ ~ hot/dry days plants:

> ~ stomata close (prevents H2O, inc CO2, dec O2)

~ spatial separation of calvin cycle

C4 into bundle sheath cell plants:

By julescrisfulla

Last updated 18th May, 2020. Page 4 of 5.

Published 18th May, 2020. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/julescrisfulla/

AP Bio Unit 3: Cell Energetics Cheat Sheet

by julescrisfulla via cheatography.com/122651/cs/22886/

Alternative Pathways of Carbon Fixation (cont)

~ PEP carboxylase initially captures CO2

CAM pathways:

- ~ temporal separation
- ~ takes in CO2 at night

By julescrisfulla

Published 18th May, 2020. Last updated 18th May, 2020.

Page 5 of 5.

Sponsored by **Readable.com**Measure your website readability!

https://readable.com

cheatography.com/julescrisfulla/