

Bit Hacks Cheat Sheet by JSondhof via cheatography.com/30576/cs/9135/

C/C++ bitwise operations				
&	AND			
	OR			
٨	XOR			
~	NOT			
<<	SHIFT (left)			
>>	SHIFT (right)			

Useful	snip	pets

Counting (c) bits set in x											
for	(c	=	0;	x;	C++)	{	Х	&=	VX-	1;	
1											

Computing parity in parallel (32 Bit)

$$x \wedge = x >> 16$$
; $x \wedge = x >> 8$; $x \wedge = x >> 4$; $x \& = 0xf$; return $(0x6996 >> x) \& 1$;

Interior orithmetics	
Integer arithmetics	
$x = y \ll n$	Multiply by n times 2
$x = y \gg n$	Divide by n times
return (x & 1) == 0	Is x even?
return (x && !(x & (x - 1)))	Is x power of 2?
return (x ^ y) < 0	Has x opposite sign than y?
y ^ ((x ^ y) & -(x < y))	min(x,y)
x ^ ((x ^ y) & -(x < y))	max(x,y)

Single bit operations			
y = x	Set the n th bit		
(1< <n)< td=""><td></td></n)<>			
	Unset the n th bit		
(1< <n)< td=""><td></td></n)<>			
$y = x \land (1 << n)$	Toggle the r th bit		
return x & (1< <n)< td=""><td>Test if the nth bit is set</td></n)<>	Test if the n th bit is set		
y = x & (x- 1)	Turn off rightmost 1bit		
y = x & (- x)	Isolate rightmost 1bit		
y = x (x- 1)	Right propagate rightmost 1bit (fill in ones)		
y = x (x+1)	Turn on rightmost 0bit		
$y = \sim x & & \\ (x+1)$	Isolate rightmost 0bit		

By **JSondhof** cheatography.com/jsondhof/

Not published yet. Last updated 16th September, 2016. Page 1 of 1. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com