Arithmetics	+
Addition	-
Subtraction	\%
Multiplication	\wedge
Division	
Modulo	\%
Exponentiation	
Modulo returns the remainder of the division of the number to the left by the number on its right, for example 5 modulo 3 or $5 \% \% 3$ is 2.	

Comparison operators	$<$
Less than	$>$
More than	$<=$
Less than or equal to	$>=$
Greater than or equal to	$==$
Equal to each other	$!=$
Not equal to each other	

Selecting by comparison

\# Poker and roulette winnings
from Monday to Friday:
poker_ vector <- c (140, -50, 20, -120, 240)
roulet te_ vector $<-c(-24,-50$,
100, -350, 10)
days_v ector <- c("M ond ay",
" Tue sda y", " Wed nes day ",
" Thu rsd ay", " Fri day ")
names(pok er_ vector) <-
days_v ector
names(rou let te_ vector) <-
days_v ector
\# Which days did you make money
on roulette?
select ion _vector <- roulet -
te_ vector > 0
\# Select from roulet te_ vector
these days
roulet te_ win nin g_days <roulet te_ vec tor [se lec tio n_v ector]

Data Types		
Decimal values	4.5	Numerics
Whole numbers	4	Integers
Boolean values	TRUE / FALSE	Logical
Text / String	"Text"	Characters
Show the data type: class(data)		

Lists Create a list my_list <- list(element1, element2) Give names my_list <- list(name1 = to the list your_comp1, name2 = items your_comp2) \# Adapt list() call to give the components names my_list <- list(vec = my_vector, mat $=$ my_matrix, df = my_df) \#or if the list was alread created names(my_list) <- c("vec", "mat", "df")

Selecting components in a list

One way to select a component is using the numbered position of that component. For example, to "grab" the first component of shining_list you type
shining_list[[1]]
A quick way to check this out is typing it in
the console. Important to remember: to select elements from vectors, you use single square brackets: []. Don't mix them up!
You can also refer to the names of the components, with [[]] or with the \$ sign. Both will select the data frame representing the reviews:
shining_list[["reviews"]]
shining_list\$reviews

Selecting components in a list (cont)
Besides selecting components, you often need to select specific elements out of these components. For example, with shining_list[[2]][1] you select from the second component, actors (shining_list[[2]]]), the first element ([1]). When you type this in the console, you will see the answer is Jack Nicholson.

Vector Basics	
Assign value to variable	my_var <- 4
Numeric vector	numeric_vector <- c(1, $10,49)$
Character_vector	character_vector <- c("a", "b", "c")
Boolean vector	boolean_vector <- c(TRUE, FALSE, TRUE)
Naming a vector	names(numeric_vector) <- c("Jack", "Jill", "Joh- anna")
Sum of the elements in the vector	sum(vector_name)
Select element 3 of the vector	element <- vector_na- me[3]
Select elements $2,3,4,5$ of the	elements <- vector_na- me[3:5]
vector	

Factors
\# Animals - Turn vector
character elements into nominal
factors
animal s_v ector <- c("E lep -
han t", " Gir aff e", " Don -
key ", " Hor se")
factor _an ima ls_ vector <-
factor (an ima ls_ vector)
factor an ima ls_vector

Factors

```
# Animals - Turn vector
```

character elements into nominal
factors
animal s_v ector <- c("E lep -
han t", " Gir aff e", " Don -
key ", " Hor se")
factor _an ima ls_ vector <-
factor (an ima ls_ vector)
factor _an ima ls_ vector

By josi68
cheatography.com/josi68/

Not published yet.
Last updated 4th December, 2023.
Page 1 of 3.

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Factors (cont)

> \# Temperature - Turn vector character elements into ordinal factors
temperature_vector <- c("High", "Low", "Hig-
h","Low", "Medium")
factor_temperature_vector <- factor(tempe-
rature_vector, order = TRUE, levels = c("L-
ow", "Medium", "High"))
factor_temperature_vector
When factors are ordinal::
order = TRUE

To give the order of the ordinal factors:
levels = c("Low", "Medium", "High"))

Data Frames	
Show the first couple of lines	head(data- frame)
Show the last couple of lines	tail(d- ata:frame)
Summarize data frame (min,	summar- y(data- max, median, quartiles)
frame)	
Structure (nr. obs, var.,	str(data_- frame)

unlike matrixes, df can have different types of data - BUT all variables need to have the same length (unlike for lists)

```
Create data frame from vectors + select
values
# Definition of vectors
name <- c("M erc ury ", " Ven -
us", " Ear th",
    " Mar s",
" Jup ite r", " Sat urn ",
    " Ura -
nus ", " Nep tun e")
type <- c("T err estrial
planet ",
    " Ter res -
trial planet ",
```

Create data frame from vectors + select values (cont)
> "Terrestrial planet",
"Terrestrial planet", "Gas giant",
"Gas giant", "Gas giant", "Gas giant") diameter <- c(0.382, 0.949, 1, 0.532, 11.209, 9.449, 4.007, 3.883) rotation <- c(58.64, -243.02, 1, 1.03, $0.41,0.43,-0.72,0.67)$
rings <- c(FALSE, FALSE, FALSE, FALSE,
TRUE, TRUE, TRUE, TRUE)
\# Create a data frame from the vectors planets_df <- data.frame(name, type,
diameter, rotation, rings)
\# Select first 5 values of diameter column planets_df[1:5, "diameter"] \# Select the rings variable from planets_df rings_vector <- planets_df\$rings \# Select planets with diameter < 1 subset(planets_df, subset $=$ diameter <1)

Order the data

In data analysis you can sort your data according to a certain variable in the dataset. In R, this is done with the help of the function order().
order() is a function that gives you the ranked position of each element when it is applied on a variable, such as a vector for example:
$a<-c(100,10,1000)$
order(a)
[1] 213

Order the data (cont)

10 , which is the second element in a, is the smallest element, so 2 comes first in the output of order(a). 100, which is the first element in a is the second smallest element, so 1 comes second in the output of order(a).
This means we can use the output of order(a) to reshuffle a:
a[order(a)]
[1] 101001000

Matrices	
Construct Matrix with 3 rows that contain the numbers 1 to 9	$\begin{aligned} & \text { matrix }(1: 9, \text { byrow = } \\ & \text { TRUE, nrow }=3) \end{aligned}$
From Vector to Matrix	Matrix_names <- matrix(vecto- r_name, byrow = TRUE, nrow = 3)
Totals for each row of a matrix	rowSums(my_matrix)
Total for each row of a matrix	colSums()
Adding columns	big matrix <- cbind(vector1, matrix1)
Adding rows	rbind
Select all elements of the first column	matrix[,1]
Select all elements of the first row	matrix[1,]
Select 2nd element of 3 rd column	matrix[2,3]
Create matrix with the data on the rows 1, 2, 3 and columns 2, 3, 4.	matrix[1:3,2:4]

Not published yet.
Last updated 4th December, 2023.
Page 2 of 3.

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Matrices (cont)	
Average of the matrix mean(matrix_- elements name)	
Summary of Matrix (and other stuff)	summary(matr- ix_name)

The argument byrow indicates that the matrix is filled by the rows. If we want the matrix to be filled by the columns, we just place byrow $=$ FALSE
all data in a matrix should be of the same type. Otherwise, create a data frame

Naming a Matrix

\# Box office Star Wars (in millions!)
new_hope <- c $(460.998,314.4)$
empire _st rikes <- c(290.475,
247.900)
return _jedi <- c(309.306, 165.8)
\# Construct matrix
star_w ars _matrix <- matrix (c (new _hope, empire _st rikes, return _jedi), nrow $=3$, byrow $=$ TRUE)
\# Vectors region and titles, used for naming
region <- c("U S", " non -US ")
titles <- c("A New Hope", "The
Empire Strikes Back", " Return
of the Jedi")
\# Name the columns with region
colnam es(sta r_w ars _ma trix)
<- region
\# Name the rows with titles
rownam es(sta r_w ars _ma trix)
<- titles
\# Print out star_w ars _matrix
star_w ars _matrix

By josi68

cheatography.com/josi68/

Not published yet.
Last updated 4th December, 2023.
Page 3 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

