
Assembler Final Cheat Sheet
by joshfedo94 via cheatography.com/37022/cs/11664/

maths

IMUL Multiply ax by what ever is
specified (for 32 bit store in
DX:AX)

DIV (16 bit) takes the operand
and divides it by AX and
stores it in AL with
remainder in AH. for 32 bit
it used DX:AX pair and
leaves awn is AX and
remainder in DX

MUL Multiply ax by what ever is
specified (all unsigned)

CWD convers the word in AX to
a double word in DX:AX

Convert num to bytes

ASCII 1 byte per char

unsigned 2 bytes for 5 chars

bcd 2 bytes for 5 chars

code examples

Write code that would find

the sum 6+12+18...+300 and

store it in var tot

MOV TOT, 0; MOV AX,6;

LOOP: ADD TOT, AX; ADD AX,

6 CMP AX,300; JLE LOOP

write code that is

assembler equiv: if(x<y)
{x ++; }es le{y+= 2}
MOV AX, X; CMP AX,Y; JGW

ELSE; ADD AX,1 JMP END;

ELSE: ASS Y,2; END:

move 500 bytes of data

TABLE1 to TABLE 2 using

MOVSB

code examples (cont)

LEA SI, TABLE1; LEA DI,

TABLE2; MOV CX, 500; CLD;

LPTOP: MOVSB; LOOP LPTOP

MOVE 500 WORDS OF DATA

FROM TABLE1 TO TABLE 2

USING INDEXING

MOV CX,500; MOV BX,0;

LPTOP: MOV AX,

TABLE1 [BX]; MOV
TABLE2 [BX],AX; ADD BX, 2;
LOOP LPTOP

count the number of blanks

in the 1000 byte string of

chars referanced by table

1 using scasb

MOV AX, SEG TABLE1; MOV

ES, AX; MOV AL, ' '; LEA

DI, TABLE1; COV CNT,0;

CLD; LPTOP: SC ASB; JNE:

SKIP; INC CNT; SKIP: LOOP

LPTOP

binary

signed
magnitude

Very left bit is 0 for +
num and 1 for -num

twos
compliment

flip the bits and add
1

27 excises add the num to 128
then convert to
binary

ones
compliment

flip all bits

unsigned all bits count but its
a positive num

Bit shifting

RCR rotate right last bite gets
stored in carry and carry
gets pushed to the first bite

SHL Shift left into cf

TEST The TEST operation sets
the flags CF and OF to
zero. The SF is set to the
most signif icant bit of the
result of the AND. If the
result is 0, the ZF is set to
1, otherwise set to 0. The
parity flag is set to the
bitwise XNOR of the least
signif icant byte of the
result, 1 if the number of
ones in that byte is even, 0
otherwise. The value of AF
is undefined.

SAR shift right into carry but
keep the signed bit the
same

CMC invert CF

ROL roatate left into the last bit
and the carry flag

CLC CF = 0

STC CF = 1

adressing

tab[di] indexed adressing [offset
+ ds *10 + DI]

[bx]
[di]

base indexi ng[reg 1 + reg
2 + ds * 10]

[si] register indire ct[ds*10 +
reg1]

[bp] base addres sin g[ss*10 +
reg1]

Loads

LODSB loads al wiht copy of
DS:SI. IF DF = 0 then
si++

LODSW loads ax wiht copy of
DS:SI. IF DF = 0 then si
++

STOSB replace byte pointed to
by ES:DI with a copy of
AL and incs DI

STOSW replace byte pointed to
by ES:DI with a copy of
AX and incs DI

CLD clears DF

STD set DF

MOVSW replaces byte pointed to
by ES:DI with word at
DS:SI. Moves SI:DI by
2

MOVSB copies the byte at
[DS:SI] or [DS:ESI] to
[ES:DI] or [ES:EDI]. It
then increments or
decrements (depending
on the direction flag:
increments if the flag is
clear, decrements if it is
set) SI and DI (or ESI
and EDI).

By joshfedo94
cheatography.com/joshfedo94/

Not published yet.
Last updated 2nd May, 2017.
Page 1 of 1.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/joshfedo94/
http://www.cheatography.com/joshfedo94/cheat-sheets/assembler-final
http://www.cheatography.com/joshfedo94/
https://apollopad.com

	Assembler Final Cheat Sheet - Page 1
	maths
	Bit shifting
	adressing
	Loads
	Convert num to bytes
	code examples
	binary

