Cheatography

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Quaternions

A quaternion is a 4 element vector that can used to encode any rotation in a 3D coordinate system.
$\mathrm{q}=(w, x, y, z)$ or $\mathrm{q}=(\mathrm{w}, \mathrm{v})$ where $\mathrm{v}=(\mathrm{x}, \mathrm{y}$, z)
$q=(w, v)=(\cos (t-\quad r$ and theta form an heta/2), sing(thet- axis-angle rotation. $a / 2) r$)
Normalise Quater- $\quad w^{2}+x^{2}+y^{2}+z^{2}=1$ nions:

Pros

Quaternions can easily be combined together, used to transform points/vectors and can be interpolated very easily. Interpolation is vital for animation, which is far more difficult with matrices

Quaternions only use 4 floats, 12 less then 4×4 matrices.

Cons
They lack hardware support, therefore they need to be converted from matrices to them and back to matrices again.

Formulae 1

Quaternion can be converted to a matrix
If $q=(w, x, y, z)$, then
1st row $-M q=\left[1-2 y^{2}-2 z^{2} 2 x y+2 w z 2 x z-\right.$
2wy 0]
2nd row $-\mathrm{Mq}=\left[2 x y-2 w z 1-2 x^{2}-2 z^{2} 2 y z+\right.$ 2wx 0]
3rd row $-\mathrm{Mq}=\left[2 x z+2 w y 2 y z-2 w x 1-2 x^{2}-\right.$ $\left.2 \mathrm{y}^{2} 0\right]$

4th row $-\mathrm{Mq}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$
Multiply result by $1 / w^{2}+x^{2}+y^{2}+z^{2}$ if q is not normalised

Can be expensive but can be simplified in code. Refer to Van Verth for more details

Formulae 2
Quaternions can be added and scaled
Addition: (w1, x1, y1, z1) + (w2, x2, y2, z2)
= (w1 + w2, x1 + x2, y1 + y2, z1 + z2)

By Jonathan_Walsh1999

cheatography.com/jonathan-
 walsh1999/

Quaternions (cont)

Multiplication: q1, q2 = (w, v) = (w1w2 - v1 v2, w1v2 + w2v1 + v2 X v1)

Note that X means cross product and . means dot product

Same effect as multiplying matrices, order important

This is potentially much faster than matrix multiplication

Formulae 3

Inverse of quaternion where rotation is in the opposite direction.
$q^{-1}=(w,-v)$
Quaternion must be normalised before formula is used

Much faster than matrix equivalent
Vector can be represented as quaternions.
Set w to 0
i.e. Vector $\mathbf{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})=(0, \mathrm{x}, \mathrm{y}, \mathrm{z})$ as a quaternion

Formulae 4
Rotate a vertex or vector \mathbf{p} by a quaternion q = (w, v)
Rotate $q(p)=q^{-1} p q=\left(2 w^{2}-1\right) p+2(v . p) v$ $+2 w(v \times p)$

Note that X means cross product and means dot product

Slower than matrix equivalent

Summary

Quaternions can perfrom similar operations to matrices with comparable performance although you need to convert to/from matrices and they can't store positioning/scaling

Therefore, there is no compelling reason to use them yet.

Not published yet.
Last updated 11th May, 2020.
Page 1 of 18.

Emerging Tech for games
Hardware Screen res/refresh rates Capabi-
lities
Depth and Stencil buffer formats Anti-aliasing

Texture Capabilities

Testing

DX 10+ define min spec

Capabi-

lities
Still need some testing to check for advance features

Consoles are largely unaffected by such matters as specs are fixed unlike PCs

Still need to check for storage size, peripherals etc.
Shader Shaders complied to machine
Capabi- code

lities

Shader version defines instruction set available

Higher shader versions have more instructions like for and if Have more registers

Should provide alternate shaders for high and low spec machines

Multiple Complex material may need Passes several passes in the shaders

Emerging Tech for games (cont)	
	So that one texture can be rendered through different shaders adding multiple postprocessing effects for example
Effect files for capabi- lities	Use .fx files we can collect together shader passes and their render states into techniques
	Provide a range of techniques for different hardware specifications
	If any one pass in a technique fails capability testing then degrade to simpler technique
	The DX effects files system makes this quite simple. Example shown in lecture slides
Geometry Shaders	This shader processes primitives e.g. triangle, lines
	Like vertex shader but works with multiple vertices at the same time
	Operates on the output of vertex shader
	Can also create or delete primitives ie output can be different to input

By Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

Emerging Tech for games (cont)		Emerging Tech for games (cont)	
	Input: Array of vertices	Stream output Considera- tions	Cannot ouput to same
	Output: Stream of primitives - Must be specified as a triangle strip for example. Can output		buffer that is being input from
	any number of primitives. Example shown on lecture		Work around this by using double buffering
	slides		Often need multiple
Geometry Shader uses	Distorting, animating geometry		passes to render/update geometry
	Silhouettes	Instancing / Stream-out for Particles	
	Creating extra view-dependent gemetry	Instancing Overview	Instancing is a method to render many models or sprites in a single API draw call
	Particle systems without		
	instancing		Previosuly we have rendered each model one at a time
Geometry shader consid- erations	Not needed for traditional geometry rendering methods so set gs shader to NULL		
			Send a list of instances with the vertex and index data
			List contains what is required
	Performance of geomtry		to render each model
	shaders may be an issue for older GPUs		Removes per-model state changes
Stream Output stage	Data ouput from gs can be written back into GPU memory		Allows for massively increased batch sizes
		Instance Buffers / State	Instance data stored on GPU is instance buffer
	Very powerful DX 11 feature		
	Particle system can be done in 2 passes on the GPU. Pass1render with GPU as normal. Pass2 - Update particle positions on GPU, writing back to memory. There ios no CPU inttervention - efficent		
			Smplest instance buffer might contain a list of instance positions
			Model defines by verterx/index data rendered once at each psoition in this buffer
Not published yet.		Sponsored by Readable.com	
Last updated 11th May, 2020.		Measure your website readability!	
Page 2 of 18.		https://readable.com	

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Instancing / Stream-out for Particles (cont)	
	State requirement for instancing can be an issue
Vertex Shaders for instancing	VS often unusual when instancing, depending on what is stored in the instance buffer
	Very common to store some per-instance data and randomise other elements
Instance Buffer Data	Can store more than just position in an instance buffer to give each instance a different look: Rotation, scale or store entire world matrix per-instance
	Can also store mroe unusal data: Seed value to randomise each isntance or entity/paticle data to allow the model to be updated on the GPU using stream-out
CPU I GPU Instancing	Simple instancing is processes using both CPU and GPU. GPU render instances and UPU update instances
Instance buffer must be made available to both CPU and GPU	

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Instancing / Stream-out for Particles (cont)	
	Space is reserved forr instance data in both CPU and GPU memory
	Constant copying of instance buffer between GPU and CPU means performance is lower than normal
	This is why we might not want to store a world matrix for each instance. Instead the data is often compressed
	Implies VS may have to do additional work to derive the full instance data
Using Instancing	Instancing suits the rendering of large numbers of similar models. ie trees, armies
	Particles are all similar, often camera-facing sprites
Particle systems are an condidate for instancing	
	Each particle system stores rendering data such as position, rotation, sclae, colour, alpha
	Each particle requires data to update its position/rotation each frame

Instancing / Stream-out for Particles (cont)
Particles are spawned from emitters

Particles have a life time after which they die

There may be attractors, repulsors and other features added for system complexity/flexibility

Approach: Store render data in instance buffer, store update data, update particles using CPU and then copy entire buffer to GPU, render particles in one vatch using instancing, much faster but still requires CPU/GPU copy

Sprite- Smart approach for camera

based facing sprite particles however particle this method can't be used if systems the particles are models

Advanced Instancing can look poor due Instancing to lack of variety

Complex instancing
techniques store more states e,g, animation data, texture offsets, material settings

Not published yet.
Last updated 11th May, 2020.
Page 3 of 18 .

Sponsored by Readable.com
Measure your website readability! https://readable.com

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Instancing / Stream-out for Particles (cont)

Able to render models in different poses, with differenttextures and material tweaks. Good for vegetation, crowds etc.

More complex shaders can help here

LAtest GPUs deal well with this kind of shader
Particles Instancing can be slow due to without the CPU update/copy CPU/GPU

copy

One simple workaround is to
avoid updates.

Drawback is that it is inflexible as paths are alwas the same. e.g. fountain can't be affected by wind

GPU	DX 10 supports stream output.
stream-	Allows GPU to output vertex
out for	data back into a vertex buffer
particle	instead of sending it on for update Usindering stream output hte GPU carticles for entities position, rotation etc
	Both render and update data is stored GPU only

cBy Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

Instancing / Stream-out for Particles (cont)

Typically we render the models twice. Pass1: Render models using instancing or similar. Pass2: Update models with stream-out - no actual rendering
Stream Reads from GPU buffer and output writes back to one but can't consid output to same buffer that is era- being input from. Work around tions this by double buffering Stream-out allows GPU only entities which is especially effective for particles.

Works expecially well with the sprite-based particles technique

DX 11 - New Features	
New	DX 11 was introduced with
Features	Win7
	Featres include multithreading, tessellation, compute shaders, shader Model 5.0 and high quality texture compression formats.
DX10	Nearly everything DX10 works DX11 Differ- ences

Not published yet.
Last updated 11th May, 2020.
Page 4 of 18 .

DX 11 - New Features (cont)

Device pointer has been split in two. Device pointer for overall control and context pointer for each thread
.fx not in the provided libraries
DX maths libraries not in 11
No font support
Few other minor changes
Pipeline Get two programmable stage: hull and domain shaders

One fixed stage in between: Tessellation

All three must be used to gether for tessellation otherwise disabled

Tessel- Input geometry made of patches lation and control points.

Vertex shader processes each control point

Hull shader also processes each control point but can access all points for a patch. Used for specific transforms.

Hull shader has an associated patch constant function which is called once per patch

Tessellation stage tessellates the patch as required

Sponsored by Readable.com

Measure your website readability! https://readable.com

DX 11 - New Features (cont)	
	Domain shader takes the generic tessellation and control points and creates the final vertices
Patches/control points	A Patch is a line, triangle or quad which is bent or shaped by some number of control points
	DX does not specify the available patch types
	This is potentially a huge change for game asset creation
Hull shader	Gets access to all control points for a single patch and can [rpcess them in any way
	Output: Final control points used to shape the patch. MAy output greater or fewer points if necessay
	Can be used for advanced purposes like approximating complex input splines using simpler output splines. providing per control point info to help the patch constant
Patch Constant Function	Called once per patch - decides how much to tessellate each patch

cheatography.com/jonathanwalsh1999/

DX 11 - New Features (cont)	
	Access input control points and the hull shader output control points as array to do its job
Tessellation Stage	Uses factors specified in the patch
	Divides up a unit square, triangle or line based on the factors
	works in a generic 0->1 space
	Several fixed algorithms are avaliable for the tessellation
Domain Shader	Takes control points output from hull shader and the generic vertices output from the tessellation stage
	Combine to create final tessellation for the scene
	Exactly whatthis involves depends on the patch type.
Distance / Density Variation	Common to vary amount of tessellation based on the geometry distance
	Distance variation is simpler
	Density variation needs pre-processing
Water- tight patch seams	As as tessellation is varied there are problems with patch seams. - cracks in geometry appear

Not published yet.
Last updated 11th May, 2020.
Page 5 of 18.

DX 11 - New Features (cont)
That is why we can control the edge tessellation separately to ensure all edges have the same tessellation factor.
Displa- Adjust height of vertices
cement
Mapping

Effectively this parallax mapping done properly
Result has correct silhouettes and no visual problems

Technical	Tessellation has performance
Issues	implications
	Displacement mapping brings more seam issues
	Models must be designed with displacement in mind

Sterescopic Rendering	
Depth Perception - 2D	Number of depth cues in a 2D image/video
	Pos and perspecive
	Known sizes of objects
	Visible detail
	Motion Parallax
	Shadows and lighting
	Occlusion - nearer objects hide further ones
	Atmospheric blurring distance fog
	None of these require 2 eyes just moncular vision
Binocular Vision	We gain additional cues from having 2 eyes

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Sterescopic Rendering (cont)
Image in each eye is different
Brain resolves into one image with depth
Not sure if this will come up in exam so only covered briefly

Animation: Interpolation

Interpolation is where a calculation is made to decipher a transform between 2 control transformations of a model

An animation is stored as a sequence of key frames (or transforms).

In order to get the frames in between the key frames, interpolation is used
Interpolation occurs in alpha blening and skinning

Linear Interpolation (Lerp)

Interpolation between two mathematical elements (could be points) P0 and P1
$\mathrm{P}(\mathrm{t})=\mathrm{P} 0(1-\mathrm{t})+\mathrm{P} 1 \mathrm{t}$
Where t is typically in the range $[0,1]$ and the start and end elements are P0 and P1 respectively.

The interpolated point will be on a straight line in between P0 and P1, hence linear interpolation

Normalised Lerp (Nerp)

Can use Linear Interpolation for transformations including translations, scaling and rotations, however, the results for rotations is not correct, resulting in unwanted scaling. Therefore, Nlerp or normalised Lerp is required for rotation.

This works however, the angles can still be inaccurate. Can use Nlerp for rotations if the overall rotation is small enough.

Spherical Linear Interpolation (Slerp)

Linear interpolation of angles is sameas linear interpolation of an arc on a sphere. Forumla different from linear interpolation (Lerp)

By Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

Animation: Interpolation (cont)

$\operatorname{slerp}(\mathrm{P} 1, \mathrm{P} 2, \mathrm{t})=\mathrm{P} 1\left(\mathrm{P} 1^{-1} \mathrm{P} 2\right)^{\mathrm{t}}$
More suited for larger rotation as it calculates the correct interpolated rotation

Slerp for Matrices: Substitute the matrices into the forumla. Required to raise the matrix to the power with t . This means that we need to convert the matrix to an axisangle format then calculate theta ${ }^{t}$ then convert back.

This is very expensive
Slerp for Quaternions: The only thing that makes it make expensive is the sine function. There can be accuracy problems for small theta, but more useable than the matrix version

Quaternion formula: slerp(P1, P2, t) = $(\sin ((1-5)$ theta) P1 $+\sin ($ t theta) P2) / \sin (theta)

Summary

Can use Lerp for positioning and scaling
For small rotations use nLerp
For larger rotations use Slerp
Rotations should be stored as quaternions if interpolation is involved as matrices are expensive

Animation: Practicalities

Matrices are not good at animations as they are performance heavy use far too much storage, so quaternions should be used instead

We can decompose the transformation into rotation, translation, scale etc., using vectors for translation and scale and quaternions for rotation

Spatial Partitioning

Spatial is any scheme that divides the Partit- game world into smaller spaces ioning

Needed for larger scale games

Not published yet.
Last updated 11th May, 2020.
Page 6 of 18 .

Spatial Partitioning (cont)

Problems with Large Games	Complex games can contain millions of instances
	The majority of instances are likely to be far from the player We would like to cull these instances instead
Simple	Can cull entity instances Culling Methods
	This is the volume of space visible from the camera, which is a cone with its head cut off.
	Check each instance against each of the 6 planes defining the frustum or more simply rejecting those beind the camera near clip plane
	Use bounding volumes and simple maths like boxes or spheres
Rationale	
Cor	Culling instance one-by-one is not the best approach for very Spatial complex environments. There are too many instances to even consider in one frame.
ioning	

Sponsored by Readable.com

Measure your website readability! https://readable.com

Maths and Tech Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/
\(\left.$$
\begin{array}{|l|l|}\hline \text { Spatial Partitioning (cont) } \\
\hline & \begin{array}{l}\text { Need to reformulate problem } \\
\text { and don't process non-visible } \\
\text { instances at all }\end{array} \\
& \begin{array}{l}\text { Partitions can be seen as } \\
\text { chunks of space and instead } \\
\text { identify which partitions are } \\
\text { invisible allowing use to accept } \\
\text { or reject large groups of } \\
\text { instances at once. }\end{array} \\
\hline \text { Simple } & \begin{array}{l}\text { Most space partitioning } \\
\text { Example use some form of }\end{array}
$$

graph to subdivide the world

where each node represents a

space. Shape of the spaces

vary by scheme. The edges

represent how the spaces are

related or connected.\end{array}\right\}\)| One example shows a very |
| :--- |
| basic partition/graph demons- |
| trating how areas in the sene |
| are connected and how a group |
| of instances can be reject by |
| one check. (Refer to lecture |
| slides for diagram) |

Spatial Partitioning (cont)
 This can help in a variety of nonrendering situations.

For example a game can be partitioned into levels. Another example could be loading or releasing resources when moving between different partitions. Or having new pp or lighting effects or changing music etc.

Game Space partitions can also help with Logic game logic

For example a race track can be split up into sectors where only the current and neighbouring sectors enable Al physics and rendering because Al race cars which are far away don't need physics etc. because you can't see them.

Not published yet.
Last updated 11th May, 2020.
Page 7 of 18 .
\(\left.$$
\begin{array}{|ll|}\hline \text { Spatial Partitioning (cont) } \\
& \begin{array}{l}\text { These sectors can also } \\
\text { simplify lap processing which } \\
\text { can include distance covered, } \\
\text { telemetrics or detecting } \\
\text { whether you are going the } \\
\text { wrong way around a race } \\
\text { track. }\end{array} \\
\text { Visibility/A- } & \begin{array}{l}\text { Paritions can be used to } \\
\text { udibility } \\
\\
\\
\\
\text { determine whether you can } \\
\text { hear sound past a concrete } \\
\text { wall for example. }\end{array} \\
\text { Visiblially } & \begin{array}{l}\text { Each node in a space } \\
\text { pertition has a potentially }\end{array} \\
& \begin{array}{l}\text { These are the nodes that can } \\
\text { in some be seen from that }\end{array}
$$

node. For example, you can\end{array}\right\}\)| see the living from the |
| :--- |
| hallway because you can see |
| through an open door. |
| (Diagram shown in lecture |
| slides) |

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Cheatography

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Spatial Partitioning (cont)

However, generating the PVS for each node is non-trivial

Possible approaches include using brute force, which considers many different camera positions. This can be slow and result in possible errors. You can manually create PVS. This can only be possible for simpler graphs and is error prone. Finally mathematical/geometric approaches can be used, which are complex and often have limitations

PVS PVS does not consider dynamic Limita geometry. For exampe if you have tions a level that has a door which opens then the door must be considered as open for PVS

Potentially visible sets must be conservative. For example, a node visible from only a tiny portion of the current node would need to be entirely visible

Spatial Partitioning (cont)	
$\begin{aligned} & \text { PVS } \\ & \text { Use } \end{aligned}$	So whilst efficent to execute, PVS systems are not ideally effective in node rejection.
	PVS system is not space partitioning scheme as such
	PVS can be added to any space partition graph regardless of shceme used
Portal Systems	USed as a quick way to renduce the number of nodes under consideration
	A Portal system is a method that concetrates on the graph edges
	Spaces in such a system are connected through portals. A portal is typically a natural opneing such as a door or window
Basic Portal usage	Portals allow us to reject other nodes based on the camera view
	Identify which node the camera is in
	Identify whether each of the node's portals are visible in the viewport

Spatial Partitioning (cont)

Now we know the nodes connected through the visible portals are also visible

Refine When a visible portal is found ments store its viewport dimensions (2D rectangle)

Clip portals in the connected node against this smaller area. Reject obscured nodes

Watch out for multiple portals leading to same nodes. We don't want to render nodes twice

Portal Cheao and simple implement

Effective for indoor geometry
Portals can handle dynamic gemometry (unlike PVS)

Each portal with 2 sides don't need to be in the same place.

Portal Can be tricky to know which node
Cons a partiuclar point is in

	Now we know the nodes connected through the visible portals are also visible
Refine ments	When a visible portal is found store its viewport dimensions (2D rectangle)
	Clip portals in the connected node against this smaller area. Reject obscured nodes
	Watch out for multiple portals leading to same nodes. We don't want to render nodes twice.
Portal Pros	Cheao and simple implement
	Effective for indoor geometry
	Portals can handle dynamic gemometry (unlike PVS)
	Each portal with 2 sides don't need to be in the same place.
Portal Cons	Can be tricky to know which node a partiuclar point is in

Sponsored by Readable.com
Measure your website readability! https://readable.com

By Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

Not published yet
Last updated 11th May, 2020.
Page 8 of 18 .

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Spatial Partitioning (cont)	
	Need to know which node the camera is in to start the algorithm. e.g. what if a camera travels through a wall or teleports?
	Portals are of little use for open areas
	Not easy to automatically generate portals from arbitrary geometry
Grids as Spatial Partitions	Can collect local entities for visibility culling like AI
	Can be used to map terrain (Height/influence maps)
	Can be extended to 3D
Disadv- antages to Grids as SP	May have many empty nodes, wasting memory, reducing cache efficency
	Choice of partition size tricky too small gives many empty odes, too large and culling etc. is ineffective
Mapping a Grid to the World	A grid is an integer indexed structure for a rectangle of world space

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Spatial Partitioning (cont)

Need to map between world space coords and grid indices

Conver- GridX $=$ (int)(GridWidth * sions for (WorldX - MinX) / (MaxX -
X
MinX))
dimension
are (Y
similar):
WorldX $=$ Min +(float)GridX * (MaxX - MinX) / GridWidth 2nd formular gives bottom-left of grid square

Quadtrees Quadtrees / Qctrees are

/ Qctrees hierarchical partition systems which use a tree structure to represent an area/volume of space.

USe specific division scheme Quadtrees are in 2D, Octrees in 3D

Creating a Root node is entire space Quadtree

Divide into four equal quadrant

Repeat division with each quadrant

Until some condition is met max depth, empty node etc.

Location	Easy to find which node point
in a	is in
Quadtree	

Can be optimised
Can use bitwise integer math

Not published yet.
Last updated 11th May, 2020.
Page 9 of 18.

Spatial Partitioning (cont)
Quadtrees USe for frustum culling for
visibility
culling
Viewing frustum is 6 planes
Test if a node is visible
Quadtree Entities aren't points
Problem
May overlap a node boundary
Entity needs to be in a larger parent node

Worst case: entities overlaps origin and does not fit in any node except root and will never be culled

Hot-spots like this all the way around the boundaries of larger nodes.
Solution Loose Quadtrees
Have nodes overlap
Entities will then fit in original node area

Few changes to algorithm increase node size when inserting entities and when doing frustum culling

Removes hotspot problem

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Spatial Partitioning (cont)	
	At the expense of larger nod at the same level
Quadtrees for	Saw intersection of viewing frustum with quadtree
Collision Detection	

Easy to find intersection of other primitives - sphere, cuboids, rays etc.
Basis for collision detection/ray casting/particle systems

Can help if we add adjacency info to the tree

Binary Hierarchical division of space Space and uses another tree Partit- structure. This one represents
ioning all space
(BSP)
Partitions are separated by lines in 2D or planes in 3D Recursively divide each partition into 2 smaller ones Creates a binary tree

Creating a Repeatedly divide space in 2 BSP

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Spatial Partitioning (cont)	
	Stop when max x elements in each partition. Partitions are small enough. tree reaches certain depth and choice depends on application
Locating a Point in a BSP	Given a point, each to find which partition it is in. Start at root of tree
	Look at example in lecture slides
BSP for solid/- hollow spaces	Can use the polygons in the scene as the division planes. Choose a polygon as a plane and polygons crossing the planes are split
	BSP splits space into hollow/solid volumes
	All polygons/entities places in hollow ones
BSP / Brush modelling	Traditional style of BSP used for FPS games
	In conjunction with PVS
	Can also be used to render partitions in a strict back to fron order

Not published yet.
Last updated 11th May, 2020.
Page 10 of 18.

Spatial Partitioning (cont)
Lends itself to a unique form of 3D modelling called brush modelling. You start with a entirely solid world, cut out primitives, entities paces in hollowed out areas. This is like digging out the level.
BSP +BSP trees are a well established
Pros technique
and
Cons
+Used for rendering/collision/ray-tracing
+Can be generated automatically
+Fully Classify space
-Need good algorithm to choose dividing planes
-Hollow/solid BSP generates extra polygons due to splitting

Deferred Rendering	
Forward Rendering	Name for the method of rendering we have used in al material so far
	Render geometry and light effects on the geometry in single pass
	Cost = numObjects x NumLights - Get's very expensive

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/
\(\left.$$
\begin{array}{|l|l|}\hline \text { Deferred Rendering (cont) } \\
\hline & \begin{array}{l}\text { Forward rendering can be } \\
\text { effective but need a slow uber- } \\
\text { shader or lots of shaders and } \\
\text { batch problems }\end{array} \\
& \begin{array}{l}\text { Doesn't work well with lots of } \\
\text { lights in one place }\end{array} \\
\hline \text { Deferred } & \begin{array}{l}\text { Decouples geometry from } \\
\text { Rendering } \\
\text { lighting }\end{array} \\
& \begin{array}{l}\text { Splits the rendering process } \\
\text { into } 2 \text { stages }\end{array} \\
& \begin{array}{l}\text { Cost }=\text { NumObject + } \\
\text { NumLights - Much cheaper }\end{array}
$$

G-Buffer

Render geometry to g-buffer,

which is several textures

holding geometry and surface

data

Example: Texture1: Diffuse

Colour Texture2: WorldP-

osition Texture3: WorldNormal\end{array}\right\}\)| Pixel shader can render to |
| :--- |
| several render targets at the |
| same time, so can build three |
| textures all in one pass with a |
| special pixel shader |

cheatography.com/jonathanwalsh1999/

Deferred Rendering (cont)	
	Large g-buffer results in major performance drain - memory access is slow...
	So data compression in the gbuffer is common ie store x and y of normal together with a single bit for direction
Volumes	G-buffer is not displayed
	Render actual scene by going through each light and rendering it's effect on the geometry
	Point light lights up a sphere around itself. Render the sphere around the point light. For each pixel find if it is actually lit up. USe data in g-buffer to calculate amount of light. Do this for every light and accumulate $=$ rendered scene
	Same concept for spotlights
	Don't need high-poly spheres or cones
	Examples shown in lecture
Deferred - Pros and Cons	+Lights become cheap to render
	+ No need for complex partitioning
	+Shaders become simpler - less of them

Not published yet.
Last updated 11th May, 2020.
Page 11 of 18.

Deferred Rendering (cont)

+Better batching performance
+G-buffer data can eb reused for Post-Processing
-Huge g-buffer can be a slow down
-G-Buffer compression to counter this reduces material flexibility
-Transparant obkects don't work, must be rendered separately
-MSAA becomes very diffcult due to g buffer
-Not actually particularly useful in some scenes(daylight)

More advanced techniques are getting very complex

Optimisation for Games

Optimisation Tradeoffs

Reducing memory use can decrease speed Increased speed might be at the expense of memory

When not to optimise

Never optimise code unless you are sure that is affects performance

Optimisations usually harm readability/maintainability of code

Can reduce functionality
Can make architecture less flexible

Performance Analysis

Generally, 90% of processor time is spent on just 10% of code

Need to identify the 10% to optimise effectively
Tools can be used to analyse performance of code during run-time

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Optimisation for Games (cont)

Performance Analysis Tools
-Simple timing functions
-Profiler - Reports on time spent in different functions
-Specialist tools like VTune, PTU, PerfKit, PerfHUD etc.

Compiler Optimisations

Compilers can perform some optimisations
Optimisations can be enabled using release mode in visual stuido.

Basic Language Optimisations

-Loop Untrolling - Does not loop through indices, just duplicated lines of code instead
-Remove constant calculations by using a variable outside a loop for example
-Change ording of conditions, like OR for example. Put simple condition first
-Pass by reference not copy
-Use early return within functions whenever possible
-Inline functions - stores functions in cache but can be ignored by compiler
-Break code into smaller steps. For example, don't have calculations inside if statements. Does not directly lead to optimisations but can help compiler optimise.
-Try programming in assembly, although it would be very complex and compliers would probably do a better job.

Data Structure Choices

-Static structures like fixed arrays might improe performance over dynamic ones
-Only choose data structures that suit your needs, nothing more

Algorithmic Improvements

-Can multiple by 0.5 rather than dividing by 2
-Reduce nesting of loops - don't go deeper than 3

By Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

Optimisation for Games (cont)
-Reduce range of loop counters
-Sort data into more convenient orders
-Cluster similar cases into one
-Reduce maths operations
-Pre-calculate formulae using look-up
tables
-Remove code completely!

Alpha Sorting and Soft Particles

Alpha	Attractive blending technique
Sorting	but cuases sorting issues
Problems	

Problem is depth buffer ignores transparancy
Avoid problem by drawing polygons back to front.

Run-time If all polygons face camera ie Depth particle system then you can Sorting sort polygons based on camera-space z distance Issues arise with this based on example shown on slides with the lines

To solve this assume polygons don't intersect

Then given 2 polygons one of them will be entirely on one side of the plane of the other Identify this polygon and see if it is on the side nearer the camera or not

Alpha Sorting and Soft Particles (cont)
First step is to get a face normal for each polygon
Join either point of polygn 2 to eachh of the points polygon 1. Calculate dot products of these with normal of polygon 2. Results all +ve : poly 1 is nearer. Results all -ve: poly 1 further. Results mixed: poly1 is split by place of poly 2 . So repeat test the other way around. If split both ways then the polygons are intersecting. Refer to slides for diagrams etc.
Run- Must ensure this sorting is time efficient as possible. so sort sorting pointer to polygon not polygon practi- data itself calities In practice, another technique alpha-to-coverage is often used as an alternative.
Hard Alpha blending is as useful as Flat other blending methods once particles the polygons are sorted However all blending methods exhibit hard edges if they intersect other polygons

Not published yet.
Last updated 11th May, 2020.
Page 12 of 18.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Alpha Sorting and Soft Particles (cont)	
	Particuarly large particles like smoke indoors
Soft Particles	To improve further we can compare depth of particle with depth already in buffer and then fade pixels out when the distance is small. - Adjust alpha toward 0
	This method can be combined with the depth particles idea presented earlier
	We must do some detailed work with depth buffer but almost completely removes hard edges where alpha particles intersect solid objects.
	Can explore volumetric particles - consider the volume of particle that camera is looking through.

| Linear Dynamics and Particle based
 Physics |
| :--- | :--- |
| Particle Data: Position, velocity,
 System Basics possibly mass |

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Linear Dynamics and Particle based Physics (cont)

	Particle velocity must change or it will only movie in a straight line. Change in velocity is called acceleration. Acceleration caused by forces on particle. Gravity is common force.
Particle Update	$F=m a$
	Use above formula to update particle each frame
	Diagram shown in lecture slides
Aprox. in this update	This ibasic physics of forces, acclerations and velocities doesn't just apply to particles. Starting point for modeling physics too.
	Problem: Approach is only an approx. we only update things once per frame. Assumes vecocity was constant over entire time period of rame. This is wrong - forces/acceleration will change gradually throughout frame. Whereas our simple approach changes the velocity isntantly to a new value each frame.

Not published yet.
Last updated 11th May, 2020.
Page 13 of 18.

Linear Dynamics and Particle based Physics (cont)

Example of this is when you have a particle following an orbit around an object. Over time the particle will move further away from the object it is orbitting. This is down to approximations and is wrong.

Initial	Updating particle pos is an
Value	example of an initial value

In this case we know pos and velocity from this frmae. Want to know position and velcity for next frame. The simple but flawed method just shown is one way of solving an initial value problem. Will present others with better accuracy.

Formal	Function which changes over
Definition	time: $\mathrm{p}(\mathrm{t})$
	Initial position/veclocity: p 0
	$($ where $\mathrm{t}=0)$
	Time period: h
	Value next frame: $\mathrm{p}(\mathrm{t} 0+\mathrm{h})$
	Need derivatives: $\mathrm{p}^{\prime}(\mathrm{t}), \mathrm{p}{ }^{\prime \prime}(\mathrm{t})$

Sponsored by Readable.com
Measure your website readability! https://readable.com

Linear Dynamics and Particle based Physics (cont)

1st derivative of pos = velocity. 2nd = acceleration
Euler's Taylor series is a represenation
Method of a function based on the derivatives at a single point (int time) $p(t+h)=p(t)+h p^{\prime}(t)+h^{2} / 2 p p^{\prime \prime}(t)+$ $h^{3} / 3!p^{\prime \prime}(t)+\ldots+h^{n} / n!p^{(n)}+\ldots$
Arranged here to suit our problem p is pos, p^{\prime} velocity, $p^{\prime \prime}$ acceleration, p " acceleration of acceleration

As h is smaller aprrox is more accurate

IT is an infinite series - cannot be completly calculated

Eulers Method uses just the 1st two terms in the series and assumes the rest are small enough to ignore.
Translation into games terms: posNextFrame $=$ currentPos + frameTime * currentVelocity veclocityNextFrame $=$ currentVelocity + frameTime * currentAccel

By Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

This is exactly the method presented earlier for updating particles in a particle system. Not ideal, terms are ignored (not always small). Still widely acceptable when accuracy isn't required.
Mid- Problem with Euler's method is point that velocity and acceleration are Method taken at the start of the frame.

The mid-point method takes them half way through the frame.

This has better accuracy than Euler's method but not perfect as half-way values are themselves approx.
Basic Less reliant on velocity
Verlet
Method

Can be resrictive because of that OK for particle systems if only concerned with position
Most basic method: uses pos from the current and previous frame and uses current acceleration
formula: $y(t+h)=2 y(5)-y(t-h)+$ $h^{2} y^{\prime \prime}(t)$

Not published yet.
Last updated 11th May, 2020.
Page 14 of 18.

Linear Dynamics and Particle based Physics (cont)
posNextFrame $=2$ * currentPos - posLastFrame + (frame time) ${ }^{2}$ * currentAcceleration
Has similar accuracy to midpoint method

Particle	Forces involved: Gravity,
Physics -	spring compression and
Springs	spring stretch Spring Forces
	Force exiders particle mass by spring is from Hooke's Law: $F=-k x$ equilibrium pospring coefficent (stiff- ness)

Practicalities	Real life systems slow down with friction
	Instead of friction we will damp the motion
	Damping force: Fd = -cv
	$v=$ velocity
	$\mathrm{c}=$ damping coefficent - works against current velocity range: 0-1
Uses	Can model rope, cloth and jelly-like objects
Different Connectors	Can use new connetor type such as elastic, rods and string

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Linear Dynamics and Particle based

 Physics (cont)| | Key difference introduced:
 Some types behave differ-
 ently when stretched and
 compressed, some are
 constrained, some don't
 exert forces at some times. |
| :--- | :--- |
| Constraints | Rods and strings have
 constraints. Rods must
 always be same length and
 string cannot be longer than
 original length |
| Mathem- | Each constraint can be
 written as an equation illust- |
| atical | Approaches
 rating then fixed length
 between particles such as:
 \mid \|pi-pj| $\left.\right\|^{2}-$ Lij ${ }^{2}=0$ |

p is particle pos and L is fixed length of connecter

Several constraints we have several equations

Known as a system of linear equations

Solving	Of the various mathematical
Constraints	solutions most have a similar repeated iterative approach.
	Examples shown in slides

Advanced Graphics: Scene Post-Proc- essing	
Front/back buffers Visible viewport can be called front buffer	
	A 2nd off-screen back buffer is the usual render target

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Advanced Graphics: Scene Post-Processing (cont)	
	After frame rendering the back buffer is copied to the front buffer
	This is a form of double-buffering
Swap method s/c- hains	Methods to get the back buffer content to the front buffer involve a simlpe copy were the back buffer is discarded or te 2 buffers are swapped which is useful if we want to keep the last frame
	Can have more than one back buffer. This is known as triple-buffering
	Improved concurrency with GPU
	Multiple back buffers must use the swap method which is called a swap chain
VSync or Not	Copy/swap is fast operation
	Can perform it during the monitor's vertical sync
	If you do this though the FPS will be tied to monitor refresh rate

Not published yet.
Last updated 11th May, 2020.
Page 15 of 18.

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Advanced Graphics: Scene Post-Proc-

essing (cont)

The textures used do not have to all be the same size so that you can scale down and back up for blur for example
Can make complex sequences of post processing like bloom.

Don't need to talk any more about Post Processing - Should be confident from assignment

Water Rendering					
Visual Aspects of Water	Reflection, refraction, fresnel effect, kught extinction, surface deformation, foam/spray/c- austics and underwater effects				
Reflection	Water behaves to some degree like a mirror				
	Perfectly still water presents a perfect reflection				
	Surface deformation presents practical difficulties as the normals vary				
Reflection	Can be dynamic, movement in				
scene is reflected		$	$	Practical-	
:---	:---				
ities	Or static - Just skybox reflected				

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Water Rendering (cont)

Static case - Cube mapping works effectively, reflect ray from camera off the surface normal and into a cube, hlsl support for cube-mapping makes this simple, works without difficulty with varying normals
Dynamic reflections - cube mapping not effective so reflect the camera in the plane of the water, render the scene from this reflected camera into a texture, draw the water surface mapped with this reflection texture

Varying normal can be simulated by offsetting which part of the reflection texture sampled

Not a fully robust solution. Reflections might come from parts of the scene that were not rendered in the reflection texture.
Approach only works perfectly for completely flat water

Not published yet.
Last updated 11th May, 2020.
Page 16 of 18.

Water Rendering (cont)	
	Alternative approach is to use ray-tracing or similar
ection	If the water surface is choppy enough it may reflect other parts of the water
	Reflection and refraction require multi-pass approaches to do properly however don't need to do it properly in most cases
	Static cube mapping: Lower half of cube map not really needed so draw the upper half reflected
	Dynamic reflected camera: render the water in the reflection texture using static cube mapping
Refraction	Where light crosses the interface between 2 different materials it bends
Amount of bend is given by	
Snell's Law	

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Maths and Tech Cheat Sheet

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Water Rendering (cont)	
Refraction in Water	When looking into water, light coming from under the water is bent and the scene at the water surface appears shifted and distorted
	Amount of shift/distortion depends on: angle at which we view the surface, variations in the surface shape - waves ripples, both of these vary per pixel
Refraction - Practicalities	Refraction typically rendered in the manner of a post processing effect - similar to distorted glass
	Process - Underwater parts of scene rendered to texture, water surface is rendered and this texture is applied, distortion is applied to UVs
	Fully robust system would be complex
Combining reflection and Refraction	Both involve rendering scene to texture

C
By Jonathan_Walsh1999
cheatography.com/jonathanwalsh1999/

Water Rendering (cont)

In practice: Create 2 textures, render sabove water scene(reflected) to 1 and the below water scene to the other. Clip each of these scenes at the water surface

Render water surface blending reflection and refraction textures

Blending amount depends on viewing angle

Fresnel To do with viewing angle and
Effect blending of textures
Effect depends on the material involved
$F=F 0+(1-F 0)(1-N . C)^{5}$
$\mathrm{F} 0=((\mathrm{n} 1-\mathrm{n} 2) /(\mathrm{n} 1+\mathrm{n} 2))^{2}$
$\mathrm{n} 1, \mathrm{n} 2$ are the refractive indexes of the material
$\mathrm{N}=$ surface normal $\mathrm{C}=$ Normal to the camera

Not published yet.
Last updated 11th May, 2020.
Page 17 of 18.

Water Rendering (cont)

F gives the proportion of reflected light coming from the surface, the remainder comes from refraction. e.g. if $F=0.3$ at a point on the surface. Point emits 30% reflected light and 70% refracted light

Fresnel formula calculated in pixel shader giving a blending ratio for the reflection and refraction textures

Light Light attenuates in water as
Extinction well as air

The effect in water is much stronger though

Practical- Effects refracted light only ities

Need to know how far light has travelled

Sponsored by Readable.com
Measure your website readability! https://readable.com

Water Rendering (cont)

Several approaches can be used: e.g. render water surface only to texture, store only its world space distance from camera, when renedering refraction texture subract the distace of each underwater pixel from the water surface distance at the same point. Gives distance the light travels through water to surface. Linearly belend RGB components based on this distance and the extinction distances given. Water surface distance texture created in the 1st step can aslso be used to do the above/below water clipping

For surface normals you can animate normal maps to get a wave or ripple effect etc.
Refer to lecture for more detail

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Not published yet.
Last updated 11th May, 2020.
Page 18 of 18.

Sponsored by Readable.com Measure your website readability! https://readable.com

