Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Quaternions

A quaternion is a 4 element vector that can used to encode any rotation in a 3D coordinate system.

q = (w, x, y, z) or $q = (v, z)$	w, v) where $v = (x, y, y)$	
,		
$q = (w, v) = (\cos(t - v))$	r and theta form an	
heta/2), sing(thet-	axis-angle rotation.	
a/2)r)		
Normalise Quater-	$w^2 + x^2 + y^2 + z^2 = 1$	
nions:		

nic Pros

Quaternions can easily be combined together, used to transform points/vectors and can be interpolated very easily. Interpolation is vital for animation, which is far more difficult with matrices.

Quaternions only use 4 floats, 12 less then 4x4 matrices.

Cons

They lack hardware support, therefore they need to be converted from matrices to them and back to matrices again.

Formulae 1

Quaternion can be converted to a matrix

If $\mathbf{q} = (w, x, y, z)$, then

1st row - Mg = $[1-2y^2 - 2z^2 2xy+2wz 2xz -$ 2wy 0]

2nd row - Mq = $[2xy - 2wz - 1 - 2x^2 - 2z^2 - 2yz + 1 - 2z^2 -$ 2wx 0]

 $3rd row - Mq = [2xz + 2wy 2yz - 2wx 1-2x^2 - 2wx 1-2wx 1-2w^2 - 2wx 1-2w^2 - 2w^2 - 2$ $2y^2 0$]

4th row - Mg = [0 0 0 1]

Multiply result by $1/w^2 + x^2 + y^2 + z^2$ if **q** is not normalised

Can be expensive but can be simplified in code. Refer to Van Verth for more details.

Formulae 2

Quaternions can be added and scaled

Addition: (w1, x1, y1, z1) + (w2, x2, y2, z2) = (w1 + w2, x1 + x2, y1 + y2, z1 + z2)

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Quaternions (cont)

Multiplication: q1, q2 = (w, v) = (w1w2 - v1). v2, $w1v2 + w2v1 + v2 \times v1$)

Note that X means cross product and . means dot product

Same effect as multiplying matrices, order important

This is potentially much faster than matrix multiplication

Formulae 3

Inverse of quaternion where rotation is in the opposite direction.

 $a^{-1} = (w, -v)$

Quaternion must be normalised before formula is used

Much faster than matrix equivalent

Vector can be represented as quaternions. Set w to 0

i.e. Vector p = (x, y, z) = (0, x, y, z) as a quaternion

Formulae 4

Rotate a vertex or vector p by a quaternion $\mathbf{q} = (\mathbf{w}, \mathbf{v})$

Rotate q (**p**) = $q^{-1}pq = (2w^2 - 1)p + 2(v \cdot p)v$ + 2w(v X p)

Note that X means cross product and . means dot product

Slower than matrix equivalent

Summary

Quaternions can perfrom similar operations to matrices with comparable performance although you need to convert to/from matrices and they can't store positioning/scaling

Therefore, there is no compelling reason to use them yet.

Emerging Tech for games

Hardware Capabi- lities	Screen res/refresh rates
	Depth and Stencil buffer formats
	Anti-aliasing
	Texture Capabilities
Testing Capabi- lities	DX 10+ define min spec
	Still need some testing to check for advance features
	Consoles are largely unaffected by such matters as specs are fixed unlike PCs
	Still need to check for storage size, peripherals etc.
Shader Capabi- lities	Shaders complied to machine code
	Shader version defines instru- ction set available
	Higher shader versions have more instructions like for and if
	Have more registers
	Should provide alternate shaders for high and low spec machines
Multiple Passes	Complex material may need several passes in the shaders

Not published yet. Last updated 11th May, 2020. Page 1 of 18.

Maths and Tech Cheat Sheet

Cheatography

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Emerging 1	ech for games (cont)	Emerging 1	Tech for games (cont)	Emerging T	ech for games (cont)
	So that one texture can be rendered through different shaders adding multiple postprocessing effects for example		Input: Array of vertices Output: Stream of primitives - Must be specified as a triangle strip for example. Can output any number of primitives.	Stream output Considera- tions	Cannot ouput to same buffer that is being input from Work around this by using
Effect files for capabi- lities	Use .fx files we can collect together shader passes and their render states into techniques	Geometry Shader	Example shown on lecture slides Distorting, animating geometry		double buffering Often need multiple passes to render/update geometry
	Provide a range of techniques for different hardware specif-	uses	Silhouettes	Instancing /	Stream-out for Particles
	ications If any one pass in a technique fails capability testing then		Creating extra view-dependent gemetry Particle systems without	Instancing Overview	Instancing is a method to render many models or sprites in a single API draw call
	degrade to simpler technique The DX effects files system	Geometry	instancing Not needed for traditional		Previosuly we have rendered each model one at a time
	makes this quite simple. Example shown in lecture slides	shader consid-	geometry rendering methods so set gs shader to NULL		Send a list of instances with the vertex and index data
Geometry	This shader processes	erations	Performance of geomtry		List contains what is required to render each model
Shaders	primitives e.g. triangle, lines Like vertex shader but works		shaders may be an issue for older GPUs		Removes per-model state changes
	with multiple vertices at the same time	Stream Output	Data ouput from gs can be written back into GPU memory		Allows for massively increased batch sizes
	Operates on the output of vertex shader	stage	Very powerful DX 11 feature	Instance Buffers /	Instance data stored on GPU is instance buffer
	Can also create or delete primitives ie output can be		Particle system can be done in	State	
	different to input	2 passes on the GPU. Pass1 - render with GPU as normal. Pass2 - Update particle			Smplest instance buffer might contain a list of instance positions
			positions on GPU, writing back		Model defines by verterx/index

Model defines by verterx/index data rendered once at each psoition in this buffer

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Not published yet. Last updated 11th May, 2020. Page 2 of 18.

to memory. There ios no CPU

inttervention - efficent

Instancing / Stream-out for Particles (cont) Instancing / Stream-out for Particles (cont) Instancing / Stream-out for Particles (cont) State requirement for Space is reserved forr Particles are spawned from instance data in both CPU and instancing can be an issue emitters GPU memory Particles have a life time after Vertex VS often unusual when instan-Shaders cing, depending on what is Constant copying of instance which they die for stored in the instance buffer buffer between GPU and CPU There may be attractors, means performance is lower instancing repulsors and other features than normal Very common to store some added for system complexity/fper-instance data and This is why we might not want lexibility randomise other elements to store a world matrix for each Approach: Store render data in instance. Instead the data is Instance instance buffer, store update Can store more than just often compressed Buffer position in an instance buffer data, update particles using Data to give each instance a Implies VS may have to do CPU and then copy entire different look: Rotation, scale additional work to derive the buffer to GPU, render particles or store entire world matrix full instance data in one vatch using instancing, per-instance much faster but still requires Using Instancing suits the rendering CPU/GPU copy Can also store mroe unusal Instancing of large numbers of similar data: Seed value to randomise models. ie trees, armies Sprite-Smart approach for camera each isntance or entity/paticle based facing sprite particles however Example: Particles are all similar, often particle data to allow the model to be this method can't be used if Particle camera-facing sprites updated on the GPU using systems the particles are models Systems stream-out Instancing can look poor due Advanced Particle systems are an ideal CPU / Simple instancing is processes Instancing to lack of variety condidate for instancing GPU using both CPU and GPU. Complex instancing Each particle system stores Instancing GPU render instances and techniques store more states rendering data such as UPU update instances e,g, animation data, texture position, rotation, sclae, Instance buffer must be made offsets, material settings colour, alpha available to both CPU and Each particle requires data to GPU update its position/rotation each frame

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Cheatography

Not published yet. Last updated 11th May, 2020. Page 3 of 18. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours!

https://apollopad.com

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Instancing /	Stream-out for Particles (cont)	Instancing	g / Stream-out for Particles (cont)	DX 11 - N	New Features (cont)
	Able to render models in different poses, with different- textures and material tweaks. Good for vegetation, crowds etc.		Typically we render the models twice. Pass1: Render models using instancing or similar. Pass2: Update models with stream-out - no actual rendering		Device pointer has been split in two. Device pointer for overall control and context pointer for each thread
	More complex shaders can	Stream	Reads from GPU buffer and		.fx not in the provided libraries DX maths libraries not in 11
	help here	output consid	writes back to one but can't		No font support
	LAtest GPUs deal well with this kind of shader	era-	output to same buffer that is being input from. Work around		Few other minor changes
Particles without	Instancing can be slow due to the CPU update/copy	tions	this by double buffering Stream-out allows GPU only	Pipeline	Get two programmable stage: hull and domain shaders
CPU/GPU copy			entities which is especially effective for particles.		One fixed stage in between: Tessellation
	One simple workaround is to avoid updates.		Works expecially well with the sprite-based particles technique		All three must be used to gether for tessellation otherwise disabled
	Drawback is that it is inflexible as paths are alwas the same. e.g. fountain can't be affected	DX 11 - N New	lew Features DX 11 was introduced with	Tessel- lation	Input geometry made of patches and control points.
	by wind	Features	Win7		Vertex shader processes each control point
GPU stream- out for particle update	DX 10 supports stream output. Allows GPU to output vertex data back into a vertex buffer instead of sending it on for rendering.		Featres include multithreading, tessellation, compute shaders, shader Model 5.0 and high quality texture compression formats.		Hull shader also processes each control point but can access all points for a patch. Used for specific transforms.
	Using stream output hte GPU can be used to update particles for entities position,	DX10 DX11 Differ-	Nearly everything DX10 works with minimal change in DX11		Hull shader has an associated patch constant function which is called once per patch
	rotation etc Both render and update data is	ences			Tessellation stage tessellates the patch as required
	stored GPU only				
	By Jonathan Walsh1999	Not publis	shed vet.	Sponsore	ed by ApolloPad.com

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 4 of 18.

Cheatography

DX 11 - Ne	ew Features (cont)	DX 11 - N	ew Features (cont)	DX 11 - Ne	w Features (cont)
	Domain shader takes the generic tessellation and control points and creates the final vertices	Tessel-	Access input control points and the hull shader output control points as array to do its job Uses factors specified in the		That is why we can control the edge tessellation separately to ensure all edges have the same tessellation factor.
Patche- s/control points	A Patch is a line, triangle or quad which is bent or shaped by some number of control points	lation Stage	patch Divides up a unit square,	Displa- cement Mapping	Adjust height of vertices
	DX does not specify the available patch types		triangle or line based on the factors		Effectively this parallax mapping done properly
	This is potentially a huge change for game asset creation		works in a generic 0->1 space Several fixed algorithms are		Result has correct silhouettes and no visual problems
Hull shader	Gets access to all control points for a single patch and can [rpcess them in any way	Domain	avaliable for the tessellation Takes control points output from	Technical Issues	Tessellation has performance implications
	Output: Final control points used to shape the patch. MAy	Shader	hull shader and the generic vertices output from the tessel- lation stage		Displacement mapping brings more seam issues Models must be designed with
	output greater or fewer points if necessay		Combine to create final tessel- lation for the scene		displacement in mind
	Can be used for advanced purposes like approximating		Exactly whatthis involves	Sterescopic	-
	complex input splines using simpler output splines. providing	Distance / Density	depends on the patch type. Common to vary amount of tessellation based on the	Depth Perception 2D	Number of depth cues in a - 2D image/video
	per control point info to help the patch constant	Variation	geometry distance		Pos and perspecive
Patch	Called once per patch - decides		Distance variation is simpler		Known sizes of objects
Constant	how much to tessellate each		Density variation needs pre-pr-		Visible detail
Function	patch		ocessing		Motion Parallax
		Water tight	As as tessellation is varied there are problems with patch		Shadows and lighting
		ugin			Occlusion - nearer objects

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Not published yet. Last updated 11th May, 2020. Page 5 of 18.

appear

seams. - cracks in geometry

patch

seams

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

Occlusion - nearer objects

None of these require 2 eyes

hide further ones

distance fog

Atmospheric blurring -

just moncular vision

from having 2 eyes

We gain additional cues

https://apollopad.com

Binocular

Vision

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Sterescopic Rendering (cont)

Image in each eye is different

Brain resolves into one image with depth

Not sure if this will come up in exam so only covered briefly

Animation: Interpolation

Interpolation is where a calculation is made to decipher a transform between 2 control transformations of a model

An animation is stored as a sequence of key frames (or transforms).

In order to get the frames in between the key frames, interpolation is used

Interpolation occurs in alpha blening and skinning

Linear Interpolation (Lerp)

Interpolation between two mathematical elements (could be points) P0 and P1

P(t) = P0(1-t) + P1t

Where t is typically in the range [0, 1] and the start and end elements are P0 and P1 respectively.

The interpolated point will be on a straight line in between P0 and P1, hence linear interpolation

Normalised Lerp (Nlerp)

Can use Linear Interpolation for transformations including translations, scaling and rotations, however, the results for rotations is not correct, resulting in unwanted scaling. Therefore, Nlerp or normalised Lerp is required for rotation.

This works however, the angles can still be inaccurate. Can use Nlerp for rotations if the overall rotation is small enough.

Spherical Linear Interpolation (Slerp)

Linear interpolation of angles is sameas linear interpolation of an arc on a sphere.

Forumla different from linear interpolation (Lerp)

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Animation: Interpolation (cont)

 $slerp(P1, P2, t) = P1(P1^{-1}P2)^{t}$

More suited for larger rotation as it calculates the correct interpolated rotation

Slerp for Matrices: Substitute the matrices into the forumla. Required to raise the matrix to the power with t. This means that we need to convert the matrix to an axisangle format then calculate theta^t then convert back.

This is very expensive

Slerp for Quaternions: The only thing that makes it make expensive is the sine function. There can be accuracy problems for small theta, but more useable than the matrix version

Quaternion formula: slerp(P1, P2, t) = (sin((1-5)theta)P1 + sin(t theta) P2) / sin(theta)

Summary

Can use Lerp for positioning and scaling

For small rotations use nLerp

For larger rotations use Slerp

Rotations should be stored as quaternions if interpolation is involved as matrices are expensive

Animation: Practicalities

Matrices are not good at animations as they are performance heavy use far too much storage, so quaternions should be used instead

We can decompose the transformation into rotation, translation, scale etc., using vectors for translation and scale and quaternions for rotation

Spatial Partitioning

Spatial	is any scheme that divides the
Partit-	game world into smaller spaces
ioning	
	Needed for larger scale games

Not published yet. Last updated 11th May, 2020. Page 6 of 18.

Spatial Partitioning (cont)

	3(11.7
Problems with Large Games	Complex games can contain millions of instances
	The majority of instances are likely to be far from the player
	We would like to cull these instances instead
Simple Culling Methods	Can cull entity instances against the viewing frustum. This is the volume of space visible from the camera, which is a cone with its head cut off.
	Check each instance against each of the 6 planes defining the frustum or more simply rejecting those beind the camera near clip plane
	Use bounding volumes and simple maths like boxes or spheres
Rationale for Spatial Partit- ioning	Culling instance one-by-one is not the best approach for very complex environments. There are too many instances to even consider in one frame.

Cheatography

Spatial Partitioning (cont)		Spatial	Partitioning (cont)	Spatial Partitioning (cont)				
	Need to reformulate problem and don't process non-visible instances at all Partitions can be seen as chunks of space and instead identify which partitions are invisible allowing use to accept		This can help in a variety of non- rendering situations. For example a game can be partit- ioned into levels. Another example could be loading or releasing resources when moving between different partitions. Or having new		These sectors can also simplify lap processing which can include distance covered, telemetrics or detecting whether you are going the wrong way around a race track.			
	or reject large groups of instances at once.		pp or lighting effects or changing music etc.	Visibility/A- udibility	Paritions can be used to determine whether you can			
Simple Example	Most space partitioning schemes use some form of	Game Logic	Space partitions can also help with game logic		hear sound past a concrete wall for example.			
	graph to subdivide the world where each node represents a space. Shape of the spaces		For example a race track can be split up into sectors where only the current and neighbouring sectors	Potentially Visible Sets (PVS)	Each node in a space partition has a potentially visible set (PVS)			
	vary by scheme. The edges represent how the spaces are related or connected.					enable AI physics and rendering because AI race cars which are far away don't need physics etc.		These are the nodes that can in some be seen from that node. For example, you can
	One example shows a very basic partition/graph demons- trating how areas in the sene are connected and how a group of instances can be reject by		because you can't see them.		see the living from the hallway because you can see through an open door. (Diagram shown in lecture slides)			
	one check. (Refer to lecture slides for diagram)				PVS can be pre-calculated and stored with each node.			
Level Division	Space partitions are not just for visibility checks				This indicates which other nodes to render whe in that node.			
				Generating PVS	A PVS scheme is concep- tually simple			

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 7 of 18.

Cheatography

Spatial	Partitioning (cont)	Spatial Pa	artitioning (cont)	Spatial	Partitioning (cont)
	However, generating the PVS for each node is non-trivial Possible approaches include using		So whilst efficent to execute, PVS systems are not ideally effective in node rejection.		Now we know the nodes connected through the visible portals are also visible
	brute force, which considers many different camera positions. This can be slow and result in possible	PVS Use	PVS system is not space partit- ioning scheme as such PVS can be added to any space	Refine ments	When a visible portal is found store its viewport dimensions (2D rectangle)
	errors. You can manually create PVS. This can only be possible for simpler graphs and is error prone.		partition graph regardless of shceme used		Clip portals in the connected node against this smaller area. Reject
	Finally mathematical/geometric approaches can be used, which are complex and often have limita-		USed as a quick way to renduce the number of nodes under consideration		obscured nodes Watch out for multiple portals leading to same nodes. We don't
	tions	Portal Systems	A Portal system is a method that concetrates on the graph edges	Portal	want to render nodes twice. Cheao and simple implement
PVS Limito	PVS does not consider dynamic	Systems	Spaces in such a system are	Pros	Cheao and simple implement
Limita tions	geometry. For exampe if you have a level that has a door which opens		connected through portals. A portal is typically a natural opneing such as a door or		Effective for indoor geometry
	then the door must be considered as open for PVS				Portals can handle dynamic gemometry (unlike PVS)
	Potentially visible sets must be conservative. For example, a node		window Portals allow us to reject other		Each portal with 2 sides don't need to be in the same place.
	visible from only a tiny portion of the current node would need to be		nodes based on the camera view	Portal Cons	Can be tricky to know which node a partiuclar point is in
	entirely visible	Basic Portal usage	Identify which node the camera is in		
			Identify whether each of the node's portals are visible in the		

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Not published yet. Last updated 11th May, 2020. Page 8 of 18.

viewport

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Spatial Par	rtitioning (cont)	Spatial Part	itioning (cont)	Spatial Part	itioning (cont)
	Need to know which node the camera is in to start the algorithm. e.g. what if a camera travels through a wall or	Conver-	Need to map between world space coords and grid indices GridX = (int)(GridWidth *	Quadtrees for visibility culling	USe for frustum culling
	teleports? Portals are of little use for open	sions for X dimension	(WorldX - MinX) / (MaxX - MinX))	g	Viewing frustum is 6 planes Test if a node is visible
	areas Not easy to automatically	are (Y similar):	Maddy - Min 1 (Back) Cridy *	Quadtree Problem	Entities aren't points
	generate portals from arbitrary geometry		WorldX = Min +(float)GridX * (MaxX - MinX) / GridWidth		May overlap a node boundary
Grids as Spatial	Can collect local entities for visibility culling like Al		2nd formular gives bottom-left of grid square		Entity needs to be in a larger parent node
Partitions	Can be used to map terrain (Height/influence maps)	Quadtrees / Qctrees	Quadtrees / Qctrees are hierarchical partition systems which use a tree structure to		Worst case: entities overlaps origin and does not fit in any node except root and will never be culled
	Can be extended to 3D		represent an area/volume of space.		Hot-spots like this all the way
Disadv- antages	May have many empty nodes, wasting memory, reducing		USe specific division scheme		around the boundaries of larger nodes.
to Grids as SP	cache efficency		Quadtrees are in 2D, Octrees in 3D	Solution	Loose Quadtrees
	Choice of partition size tricky - too small gives many empty	Creating a Quadtree	Root node is entire space		Have nodes overlap Entities will then fit in original
	odes, too large and culling etc. is ineffective		Divide into four equal quadrant		node area Few changes to algorithm -
Mapping a Grid to	A grid is an integer indexed structure for a rectangle of		Repeat division with each quadrant		increase node size when inserting entities and when doing frustum culling
the World	world space		Until some condition is met - max depth, empty node etc.		Removes hotspot problem
		Location in a Quadtree	Easy to find which node point is in		
			Can be optimised		
			Can use bitwise integer math		
C	By Jonathan_Walsh1999 cheatography.com/jonathan-	Not publish Last update	ed yet. d 11th May, 2020.		by ApolloPad.com as a novel in them. Finish

tography.com/jonathan-1999/ walsh1999/

Last updated 11th May, 2020. Page 9 of 18.

Everyone has a novel in them. Finish Yours! https://apollopad.com

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Spatial Parti	tioning (cont)	Spatial Par	rtitioning (cont)	Spatial	Partitioning (cont)
Quadtrees for Collision	At the expense of larger nodes at the same level Saw intersection of viewing frustum with quadtree		Stop when max x elements in each partition. Partitions are small enough. tree reaches certain depth and choice depends on application		Lends itself to a unique form of 3D modelling called brush modelling. You start with a entirely solid world, cut out primitives, entities paces in hollowed out areas. This is like
Detection	Easy to find intersection of other primitives - sphere,	Locating a Point in a BSP	Given a point, each to find which partition it is in. Start at root of tree	BSP Pros	digging out the level. +BSP trees are a well established technique
	cuboids, rays etc. Basis for collision detect-		Look at example in lecture slides	and Cons	
	ion/ray casting/particle systems	BSP for solid/-	Can use the polygons in the scene as the division planes.		+Used for rendering/collision/ray tracing
	Can help if we add adjacency info to the tree	hollow spaces	Choose a polygon as a plane and polygons crossing the		+Can be generated automatically +Fully Classify space
Binary Space	Hierarchical division of space and uses another tree		planes are split BSP splits space into		-Need good algorithm to choose dividing planes
Partit- ioning (BSP)	structure. This one represents all space		hollow/solid volumes All polygons/entities places in hollow ones		-Hollow/solid BSP generates extra polygons due to splitting
	Partitions are separated by lines in 2D or planes in 3D	BSP / Brush	Traditional style of BSP used for FPS games	Deferre	ed Rendering d Name for the method of
	Recursively divide each partition into 2 smaller ones	modelling	In conjunction with PVS	Render	ring rendering we have used in all material so far
Creating a BSP	Creates a binary tree Repeatedly divide space in 2		Can also be used to render partitions in a strict back to fron order		Render geometry and light effects on the geometry in single pass
					Cost = numObjects x

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

Not published yet. Last updated 11th May, 2020. Page 10 of 18.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

expensive

NumLights - Get's very

https://apollopad.com

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Deferred Re	endering (cont)	Deferred I	Rendering (cont)	Deferred Rendering (cont)
	Forward rendering can be effective but need a slow uber- shader or lots of shaders and		Large g-buffer results in major performance drain - memory access is slow	+Better batching performance +G-buffer data can eb reused for Post-P- rocessing
	batch problems Doesn't work well with lots of lights in one place		So data compression in the g- buffer is common ie store x and y of normal together with a	-Huge g-buffer can be a slow down -G-Buffer compression to counter this reduces material flexibility
Deferred Rendering	Decouples geometry from lighting	Lighting Volumes	single bit for direction G-buffer is not displayed	-Transparant obkects don't work, must be rendered separately
	Splits the rendering process into 2 stages Cost = NumObject +	volumes	Render actual scene by going through each light and rendering	-MSAA becomes very diffcult due to g- buffer
	NumLights - Much cheaper		it's effect on the geometry	-Not actually particularly useful in some scenes(daylight)
G-Buffer	Render geometry to g-buffer, which is several textures holding geometry and surface data		Point light lights up a sphere around itself. Render the sphere around the point light. For each pixel find if it is actually lit up.	More advanced techniques are getting ve complex
	Example: Texture1: Diffuse Colour Texture2: WorldP- osition Texture3: WorldNormal		USe data in g-buffer to calculate amount of light. Do this for every light and accumulate = rendered scene	Optimisation for Games Optimisation Tradeoffs Reducing memory use can decrease spee
	Pixel shader can render to several render targets at the		Same concept for spotlights	Increased speed might be at the expense memory
	same time, so can build three textures all in one pass with a special pixel shader		Don't need high-poly spheres or cones Examples shown in lecture	When not to optimise Never optimise code unless you are sure
	MRT = Multiple Render Target	Deferred	+Lights become cheap to	that is affects performance Optimisations usually harm readability/ma
	Data in g-buffer is anything we need to calculate lit version of	- Pros and Cons	render	ntainability of code Can reduce functionality
	the scene		+No need for complex partit-	Can make architecture less flexible Performance Analysis
			ioning +Shaders become simpler - less of them	Generally, 90% of processor time is spent on just 10% of code
				Need to identify the 10% to optimise effect

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 11 of 18. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

of code during run-time

Tools can be used to analyse performance

ively

Optimisation for Games (cont)

-Profiler - Reports on time spent in different

-Specialist tools like VTune, PTU, PerfKit,

Compilers can perform some optimisations

Optimisations can be enabled using release

-Loop Untrolling - Does not loop through

indices, just duplicated lines of code instead

-Remove constant calculations by using a

-Change ording of conditions, like OR for

-Use early return within functions whenever

-Inline functions - stores functions in cache

statements. Does not directly lead to optimi-

-Try programming in assembly, although it would be very complex and compliers would

sations but can help compiler optimise.

variable outside a loop for example

example. Put simple condition first

-Pass by reference not copy

but can be ignored by compiler

-Break code into smaller steps. For example, don't have calculations inside if

possible

Performance Analysis Tools

-Simple timing functions

Compiler Optimisations

mode in visual stuido.

Basic Language Optimisations

functions

PerfHUD etc.

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Optimisatio	on for Games (cont)				
-Reduce range of loop counters					
-Sort data into more convenient orders					
-Cluster similar cases into one					
-Reduce m	naths operations				
-Pre-calculate formulae using look-up tables					
-Remove of	code completely!				
Alpha Sort	ing and Soft Particles				
Alpha Sorting Problems	Attractive blending technique but cuases sorting issues				
	Problem is depth buffer ignores transparancy				
	Avoid problem by drawing polygons back to front.				
Run-time Depth Sorting	If all polygons face camera ie particle system then you can sort polygons based on camera-space z distance				
	Issues arise with this based on example shown on slides with the lines				
	To solve this assume polygons don't intersect				
	Then given 2 polygons one of them will be entirely on one side of the plane of the other				
	Identify this polygon and see if it is on the side nearer the camera or not				

Alpha Sorting and Soft Particles (cont)

First step is to get a face normal for each polygon

Join either point of polygn 2 to eachh of the points polygon 1. Calculate dot products of these with normal of polygon 2. Results all +ve : poly 1 is nearer. Results all -ve: poly 1 further. Results mixed: poly1 is split by place of poly 2. So repeat test the other way around. If split both ways then the polygons are intersecting. Refer to slides for diagrams etc. Run-Must ensure this sorting is time efficient as possible. so sort sorting pointer to polygon not polygon practidata itself calities In practice, another technique alpha-to-coverage is often used as an alternative. Hard Alpha blending is as useful as Flat other blending methods once particles the polygons are sorted However all blending methods exhibit hard edges if they intersect other polygons

probably do a better job. Data Structure Choices

-Static structures like fixed arrays might improe performance over dynamic ones

-Only choose data structures that suit your needs, nothing more

Algorithmic Improvements

-Can multiple by 0.5 rather than dividing by 2

-Reduce nesting of loops - don't go deeper than 3

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 12 of 18.

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Alpha Sorting and Soft Particles (cont)			
	Particuarly large particles like smoke indoors		
Soft Particles	To improve further we can compare depth of particle with depth already in buffer and then fade pixels out when the distance is small Adjust alpha toward 0		
Depth- Soft Particles	This method can be combined with the depth particles idea presented earlier		
	We must do some detailed work with depth buffer but almost completely removes hard edges where alpha particles intersect solid objects.		
Further Possib- ilities	Can explore volumetric particles - consider the volume of particle that camera is looking through.		
Linear Dy Physics	namics and Particle based		
Particle	Data: Position, velocity,		

System Basics

Linear Dynamics and Particle based Physics (cont)

	Particle velocity must change or it will only movie in a straight line. Change in velocity is called acceleration. Acceleration caused by forces on particle. Gravity is common force.
Particle Update	F=ma
	Use above formula to update particle each frame
	Diagram shown in lecture slides
Aprox. in this update	This ibasic physics of forces, acclerations and velocities doesn't just apply to particles. Starting point for modeling physics too.
	Problem: Approach is only an approx. we only update things once per frame. Assumes vecocity was constant over entire time period of rame. This is wrong - forces/acceleration will change gradually throughout frame. Whereas our simple approach changes the velocity isntantly to a new value each frame.

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

possibly mass

Not published yet. Last updated 11th May, 2020. Page 13 of 18.

Linear Dynamics and Particle based Physics (cont)

	Example of this is when you have a particle following an orbit around an object. Over time the particle will move further away from the object it is orbitting. This is down to approximations and is wrong.
Initial Value problems	Updating particle pos is an example of an initial value problem. We know the value of an equation at an initial point in time. Want ot calculate value at some furutre point in time.
	In this case we know pos and velocity from this frmae. Want to know position and velcity for next frame. The simple but flawed method just shown is one way of solving an initial value problem. Will present others with better accuracy.
Formal Definition	Function which changes over time: p(t)
	Initial position/veclocity: p0 (where t = 0)
	Time period: h
	Value next frame: p(t0 + h)
	Need derivatives: p'(t), p"(t)

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Linear Dynamics and Particle based Physics (cont)			Linear D Physics (
	1st derivative of pos = velocity. 2nd = acceleration			Т р
Euler's Method	Taylor series is a represenation of a function based on the deriva- tives at a single point (int time)			p ic a
	$\begin{split} p(t+h) &= p(t) + hp'(t) + h^2/2p''(t) + \\ h^3/3!p'''(t) + + h^n/n!p^{(n)} + \end{split}$			a r
	Arranged here to suit our problem		Mid- point	F tl
	p is pos, p' velocity, p" accele- ration, p" acceleration of accele- ration		Method	ta T h
	As h is smaller aprrox is more accurate			T
	IT is an infinite series - cannot be completly calculated			h a
	Eulers Method uses just the 1st two terms in the series and assumes the rest are small enough to ignore.		Basic Verlet Method	L
	Translation into games terms: posNextFrame = currentPos + frameTime * currentVelocity			
	veclocityNextFrame = currentVe- locity + frameTime * currentAccel			N fi fi
				r
				fe h

Linear Dynamics and Particle based Physics (cont)

	This is exactly the method presented earlier for updating particles in a particle system. Not ideal, terms are ignored (not always small). Still widely acceptable when accuracy isn't required.
Mid-	Problem with Euler's method is
point Method	that velocity and acceleration are taken at the start of the frame.
	The mid-point method takes them half way through the frame.
	This has better accuracy than
	Euler's method but not perfect as half-way values are themselves
	approx.
Basic Verlet Method	Less reliant on velocity
	Can be resrictive because of that
	OK for particle systems if only concerned with position
	concerned with position Most basic method: uses pos from the current and previous frame and uses current accele-

Linear Dynamics and Particle based Physics (cont)

	posNextFrame = 2 * currentPos - posLastFrame + (frame time) ² * currentAccel- eration
	Has similar accuracy to mid- point method
Particle Physics - Springs	Forces involved: Gravity, spring compression and spring stretch
	Considers particle mass
Spring Forces	Force exerted by spring is from Hooke's Law: F = -kx
	x = displacement for spring's equilibrium pos
	k = spring coefficent (stiff- ness)
Practical- ities	Real life systems slow down with friction
	Instead of friction we will damp the motion
	Damping force: Fd = -cv
	v = velocity
	c = damping coefficent - works against current velocity range: 0-1
Uses	Can model rope, cloth and jelly-like objects
Different Connectors	Can use new connetor type such as elastic, rods and string

C By ch w

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 14 of 18. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

https://apollopad.com

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Linear Dynamics and Particle based Physics (cont)		Advanced Graphics: Scene Post-Proc- essing (cont)		Advanced Graphics: Scene Post-Proc- essing (cont)	
	Key difference introduced: Some types behave differ- ently when stretched and		After frame rendering the back buffer is copied to the front buffer		Alternatively can copy to front buffer immediately May see
Constraints	compressed, some are constrained, some don't exert forces at some times.	Swap method s/c- hains	This is a form of double-buffering Methods to get the back buffer content to the front buffer involve a simlpe copy were the back buffer is discarded or te 2 buffers	Altern- ative Render Targets	tearing Not necessary to render to a back buffer
	constraints. Rods must always be same length and	nains	are swapped which is useful if we want to keep the last frame	Ū	We can render to a texture or to a specially created render target
Mathem-	string cannot be longer than original length Each constraint can be		Can have more than one back buffer. This is known as triple-bu- ffering		Can create explicit render targets or render to multiple render targets
atical Approaches	written as an equation illust- rating then fixed length between particles such as: pi-pj ² - Lij ² = 0		Improved concurrency with GPU Multiple back buffers must use the swap method which is called a swap chain	Scene Post-P- roc- essing	Assume we render the entire scene to an intermediate texture
	p is particle pos and L is fixed length of connecter	VSync or Not	Copy/swap is fast operation		Can then copy it to back buffer to be presented to the viewport but
	Several constraints we have several equations Known as a system of linear	OF NOL	Can perform it during the monitor's vertical sync		we can also perform additional image processing during this copy
Solving Constraints	equations Of the various mathematical solutions most have a similar repeated iterative approach.		If you do this though the FPS will be tied to monitor refresh rate		The copy process is effectively another rendering pass so the look of the scene is altered through pixel shader
	Examples shown in slides				This is full-screen post-proc- essing
essing Front/back	aphics: Scene Post-Proc- Visible viewport can be called front buffer			Multiple Passes / Render	Can post-process in multiple passes

Render

Targets

Sponsored by ApolloPad.com Everyone has a novel in them. Finish https://apollopad.com

Yours!

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/

A 2nd off-screen back buffer is the usual render target

> Not published yet. Last updated 11th May, 2020. Page 15 of 18.

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Advanced Graphics: Scene Post-Processing (cont)

The textures used do not have to all be the same size so that you can scale down and back up for blur for example

Can make complex sequences of post processing like bloom.

Don't need to talk any more about Post Processing - Should be confident from assignment

Water Rendering

Visual Aspects of Water	Reflection, refraction, fresnel effect, kught extinction, surface deformation, foam/spray/c- austics and underwater effects
Reflection	Water behaves to some degree like a mirror
	Perfectly still water presents a perfect reflection
	Surface deformation presents practical difficulties as the normals vary
Reflection Practical- ities	Can be dynamic, movement in scene is reflected
	Or static - Just skybox reflected

By Jonathan_Walsh1999

walsh1999/

cheatography.com/jonathan-

Water Rendering (cont)

Static case - Cube mapping works effectively, reflect ray from camera off the surface normal and into a cube, hlsl support for cube-mapping makes this simple, works without difficulty with varying normals

Dynamic reflections - cube mapping not effective so reflect the camera in the plane of the water, render the scene from this reflected camera into a texture, draw the water surface mapped with this reflection texture

Varying normal can be simulated by offsetting which part of the reflection texture sampled

Not a fully robust solution. Reflections might come from parts of the scene that were not rendered in the reflection texture. Approach only works perfectly for completely flat water

Not published yet. Last updated 11th May, 2020. Page 16 of 18.

Water Rendering (cont)

Water Rendering (cont)					
	Alternative approach is to use ray-tracing or similar				
Self-Refl- ection	If the water surface is choppy enough it may reflect other parts of the water				
	Reflection and refraction require multi-pass approaches to do properly however don't need to do it properly in most cases				
	Static cube mapping: Lower half of cube map not really needed so draw the upper half reflected				
	Dynamic reflected camera: render the water in the reflection texture using static cube mapping				
Refraction	Where light crosses the interface between 2 different materials it bends				
	Amount of bend is given by Snell's Law				
	Depends on: Angle of incidence, refractive indexes, vacuum has a refractive index of 1, clean water is 1.33				
	n1sin(theta1) = n2sin(theta2)				

Maths and Tech Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22389/

Water Rendering (cont)		Water Re	endering (cont)	Water Rendering (cont)	
Refraction in Water	When looking into water, light coming from under the water is bent and the scene at the water surface appears shifted and distorted		In practice: Create 2 textures, render sabove water scene(ref- lected) to 1 and the below water scene to the other. Clip each of these scenes at the water		F gives the proportion of reflected light coming from the surface, the remainder comes from refraction. e.g. if $F = 0.3$ at a point on the surface. Point
	Amount of shift/distortion depends on: angle at which		surface Render water surface blending reflection and refraction textures		emits 30% reflected light and 70% refracted light Fresnel formula calculated in
	we view the surface, variations in the surface shape - waves ripples, both of these vary per pixel		Blending amount depends on viewing angle		pixel shader giving a blending ratio for the reflection and refraction textures
Refraction - Practical-	Refraction typically rendered in the manner of a post	Fresnel Effect	To do with viewing angle and blending of textures	Light Extinction	Light attenuates in water as well as air
- Fractical-	processing effect - similar to distorted glass		Effect depends on the material involved	Exunction	The effect in water is much
	Process - Underwater parts of scene rendered to texture, water surface is rendered and this texture is applied,		$F = F0 + (1 - F0)(1 - N \cdot C)^{5}$ $F0 = ((n1 - n2)/(n1+n2))^{2}$	Practical- ities	stronger though Effects refracted light only
			n1, n2 are the refractive indexes of the material	Need to know how far light has travelled	
	distortion is applied to UVs Fully robust system would be complex		N = surface normal C = Normal to the camera		
Combining reflection and Refraction	Both involve rendering scene to texture				

C

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 17 of 18.

Water Rendering (cont)

Several approaches can be used: e.g. render water surface only to texture, store only its world space distance from camera, when renedering refraction texture subract the distace of each underwater pixel from the water surface distance at the same point. Gives distance the light travels through water to surface. Linearly belend RGB components based on this distance and the extinction distances given. Water surface distance texture created in the 1st step can aslso be used to do the above/below water clipping

For surface normals you can animate normal maps to get a wave or ripple effect etc.

Refer to lecture for more detail

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 11th May, 2020. Page 18 of 18.