Cheatography

Games Dev 2 Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Entity IDs	And Communication
Forms of Entity Identi- ficati- on:	Pointers, Names, Entity UIDs (Evaluate these)
Entity Pointe- rs(pro- s/cons)	Problems occur when entities are destroyed. For example when an entity high up in the chain dies, therefore, making the pointer invalid. Can lead to exceptions
Entity UIDs(U nique Identi- fier	+ Holds a UID instead of a pointer
	+ Uses a function to safely convert into pointer
	+ An error is returned when resource doesn't exist. A lot easier to handle than invalid pointers.
	+ Hash tables are used which provide efficency. Keys are converted into integers.
	- Collisions can occur in hash tables
Entity Messag ing	Better to send messages to entities than to use getters and setters
	+ Entities only need to know messaging types
	+ Can make interactions more complex, by having replies for example.
	Need a system messenger class. Avoid using new and delete. Use statics
	By Jonathan_Walsh1999

Entity IDs And Communication (cont)

- Finding the position of another entity can be clumsy
- There is latency between responses
- + Entity UIDs can be converted to pointers to access generic or commonly used data
- + Could implement an ImmediateMessage function where message is sent directly to entity and return value is response

Component-Based Entities

Problems with OO	Tight couping between parent and child. Features of parents affect or limit the features of children
	Hierarchies are static, games need more flexibility
	Multiple inheritance can be use but causes confusion
Comp- onent based Archit- ecture	Entity holds a dynamic list of components
	Each component has an update function called when entity is updated
	Messages to entity passed to each component. e.g. health component reacts to a damage message
	Send messages to compon- ents/entities within the same entity

Component-Based Entities (cont)

- +Litte coupling between components
- +Easy to add/remove functionality
- +Simple to conceptualise
- +Easily built from script/data files
- -Much more message passing
- -May be too flexible

Camera Pr	ojection/Picking
Model Space	Entity's mesh is defined in its own local coordinate system
World Space	Transforming a model in the world
World Matrix	Transforming model from model space to world space with a matrix.
Camera Space	The scene as view from the camera's position.
View Matrix	Transformation from world space to camera space is done with the view matrix.
Camera to Viewport space	Project camera space into 2D.
	This is done with the projection matrix
Proj- ection Details	Near clip distance is from camera position to viewport.
	Far clip distance is furthest we can see from camera position.
	FOV - field of view

cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 3rd May, 2020. Page 1 of 9. Sponsored by **Readable.com** Measure your website readability!

https://readable.com

Cheatography

Games Dev 2 Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Tools P	Influe		
Tool Chain	Sequence of tools needed to convert raw assets through to usable game data.	Maths	
Influenc	е Мар		
Infl- uence Map	Way of viewing the distribution of control over a map.		
	Grid out the world and provide a numerical estimate of the influence of every unit on the cell	Docir	
	Influence diminishes over distance.	ility	
	The influence of all units in the game are summed in order to generate an influence map which is a representation of influence and location which can be used	Time distar	
	for strategic analysis. An example can be using the euclidean distance to calculate influence on each square/cell.	ility	
	influence = 0.5^{distance}	eting Resul	
	with positive values used for friendly units and negative for enemies.		
Front line	Line that can be traces at the edge of positive and negative cells.		
Conc- ent- ration of forces	The areas with the highest positive values are where the influence of the friendly forces are strongest.		

Influence Map (cont)

Maths	The influence falls off over distance which can be linear or exponential with distance. Influence is represented by the type of weapons for example. ie a sword is less powerful than a gun
	Because inflenuence never reaches 0, use a cut off point for very small values to avoid unnecessary calculations.
Desirab- ility	A weighted sum which would change accordingly to the context or type of decision.
Time & distance	Even though influence diminishes over distance it can still have an impact on decisions taken by other units far away
Time & probab- ility	Can suggest how we use influence maps to represent potential actions
Interpr- eting Results	Influence state decision such as combat want to choose acell in which enemy is weak but in which we are strong
	Examine the distance of units to the front-line both friendly and enemy which can help indicate areas to which we should be paying special attention to.

Influence Map (cont)

Terr	Can increase or decrease the		
ain	propagation of influence according		
	to terrain. e.g. take obstacles into		
	account		

Blackboard Model				
Blac- kboard Model	Is a decision making method.			
	Problems and all workings out are written on the blackboard.			
	The insight is that a collective understanding of a problem may be better than an individual understanding.			
	May be more efficient to have many experts each with a partial understading of a problem than one expert that has a full unders- tanding.			
Spec- ialists	No specialist understands the whole problem			
	Component that can operate on the data written p on the blackb- oard. The area of expertise of each specialist is narrow. A specialist may indicatate a relevance value indicating how they can deal with the problem.			
	No communication allowed between experts. Everything goes through the medium of the blackboard.			
Arbiter	Selects which of the specialists to execute			
Arch- ite- cture	2 types of architecture			

By Jonathan_Walsh1999 cheatography.com/jonathan-

walsh1999/

Not published yet. Last updated 3rd May, 2020. Page 2 of 9.

Production Systems (cont)

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Cheatogra	phy
-----------	-----

	 A) Multiple specialists each with their own area of expiertie. It is assumed that only one specialist at a time will be dealing with a specific 		A deductive argument can only bring out what is already implicit in it premises but can give rise to questions. Reasoning is carried out by an interpreter		
	problem. B) Specialists with overlapping areas of expertise. More than 1 specialist can signal relevance. More than one specialist can deal with a problem at a time.	2 methods assertions hypothese			
		Trees	Trees		
Char act-	Blackboard offers flexibility	Trees	representing knowledge.		
eri- stics			A decision tree is a way of using inputs to predict future		
	Order of reasoning not pre-deter- mined		It is a classification method,		
	At any given point that most relevant specialist will be selected		examples using inductions. They can deal with uncertainty.		
	Specialists can act in a variety of ways like requesting more data etc.		thye dont use ranges because of large numbers of branching	Scene Update	
	A specialist need not know how its assertions or signals are going to be used.	Sequ- ence	alternatives. Execute the first node that has not yet succeeded. Keep		
	The specialist is only concerned with fulfilling a request.		executing a task until it returns a success. Any failure in the sequence is a failure overall		
Produe	ction Systems		Fix or continue to next sequence.		
Know- ledge	Knowledge is representation and the methods for manipu-	Selector	Selects one child node to execute. Could be random or		
entatio	s- iaung it on		some sort of control mechanism.		
Proc- edural Knowl dge	ls operational ie what to do when e-	Deco- rator	Single child node. Allows for other types of operation such as repetition, filter or an inventor.	Entity Render ing	
	Most common method is production rules	ID3 algori-	Note: Look at Tree PP for method	Pre/Pos Render	
Prod- uction Rules	New knowledge is derived using various reasoning mechanisms. IF AND THEN	thms		y	

By Jonathan_Walsh1999 cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 3rd May, 2020. Page 3 of 9. Sponsored by **Readable.com** Measure your website readability! https://readable.com

Entity Update and Rendering

Entity Update	Each entity has its own update function
	Can be called every frame or less frequently
	Recieves/processes messages
	Send messages
	Decision making
	+ Entity behaviour and state collected together
	+Easy to maintain
	+ Easier to comprehend behaviour
	- Overall game behaviour is distributed, can get unexpected interaction
	 Messaging between entities can be long-winded
Scene Update	In the TL-Engine a single global update function is used
	Can become bloated/hard to maintain
	No attempt to encapsulate behaviour
	Using entity-based update still uses Scene Update to do certain global update work
	+ Global function easy to work with
	- Model state tends to become a set of globals
Entity Render- ing	Each entity gets its own render function. A function that's called every frame to update animat- ions, positions, textures etc.
Pre/Post Render- ing	Called for entities before and after the main rendering calls. E.g. Calculating camera view matrix

Cheatography

Games Dev 2 Cheat Sheet by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Entity Update and Rendering (cont)			Text-bas	sed Game Data (cont)
Dot Product Formula X.T = X T cos(B) Text-based Game Data				Tree-traversal parsing - Reads entire document and passes back as a complete hierarchical structure
ding	- Requires recompilation to change data which can be slow for large project.		XML Disadv ant- ages	The redundancy of syntax causes higher storage making parsing take longer.
	- Cannot be done at runtime To improve this we can use data files.			XML is less readable compared to other text-based document formats such as JSON. XML doesn't support arrays.
	+ Hard coded data is stored in a text format which means it is human readable/writable. Text based data will need to			XML files are usually larger due to being verbose therefore it totally depends on who is writing it.
	be parsed at run-time.			
Binary data files Issues	aryCan help in large data setsAdva- ntagesa filesas it's quicker to parse but they're not human readableMLMesSlower than using hard-c-	Adva- ntages XML	XML is platform and progra- mming language independent therfore can be used by any system and supports hardware	
based data	ta Text need more storage than			Support Unicode and intern- ational encoding standard for use with different languages and
	binary			scripts.
	Need good test cases to have good text validation. Additional code development required			The data stored and transported using XML can be changed at any point of time without affecting the data presented. XML allows
XML (eXten- sible Mark- up	Structured data			validation using DTD and Schema. This validation ensures that the XML document is free from any syntax error.
Language	N			
	Not a programming language			
	Stream-oriented parsing - Uses callbacks as tags that are opened and closed			

Fext-based Game Data (cont)

XML simplifiesdata sharing between various systems because of its platform independent nature.

Concurrent Programming		
Conc- urrent Program	Simultaneously executes multiple interacting comput- ational tasks. Not the same as parallel program	
Proc- esses/- threads	The tasks may be separate programs or a set of proces- ses/threads created by a single program.	
	Focus of concurrent progra- mming is the interaction between tasks and the coordi- nation of shared resoruces.	
Parallel Progra- mming	Simultaneously exutes a single task across several processors	
Proc- esses	A program is just a passive set of instuctions whereas a process is an active instance of a program, acually being executed	
	Each process has a distinct set of resources. A section of memory (RAM, cache). System Resources. Security settings (perms), processor state	
Threads	A program may in turn contain several threads of execution	
	Threads conatin process resources Look Above ^^	
	Processes can be single threaded or multi-threaded	

By C chea

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/ Not published yet. Last updated 3rd May, 2020. Page 4 of 9.

Cheatography

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Concurrent	Programming (cont)		Concurre
	Multi-threaded can be more efficent if done right		Mutex
	Multi-threaded processes are more efficient than multi process programs due to less setup and communication since threads share resources.		Sema- phore
Data Coordi- nation	Major issue with concurrent is preventing concurrent processes from interfering with eachother.	ļ	Timers
Resource	Preventing sharing of		
nation	One process rewrites content of the file while another is in the process of reading it.		Bloc- king
Race Condit- ions	2 processes racing to complete their task first		
	A flaw in a concurrent system where the exact sequence or timing of events affects the output.		
	Hard to track down due to shared data/resources being accesses almost simultane- ously.		
Locking	A resource, piece of data or section of code can be locked to a single process or thread.		
Critical Section	A section of code that can only be accessed by a single thread at a time The section of code is aasumed to be accesing data that needs careful synchr- onisation. Only locks code not data.		
	Dy Janathan Walah1000	_	

nt Programming (cont)

lutex	An object that can only be owned by a single thread on a single process at a time.
ema- hore	An obkect that can be held by up to N threads simultaneously. Section can be shared by a few processes but not an unlimited number, which limits the number resources that can be opened simultaneously.
imers	Can pause a thread until a certain time or repeatedly wake/sleep a thread.
loc- ing	When a thread or process is prevented from accessing data or executing code due to synchroni- sation object is said to be blocked.
	When a thread is blocked wait for the code/data to become available by allowing the thread to stall (sleep) , which loses the advantages of concurrency. And can add a timeout to help limit how long to wait. Or simply skip the task that requires the blocked data/code

Concurrent Programming (cont)

Dead	When 2 threads try to lock 2
ocks	resources they stall waiting for
	eachother causing a deadlock and
	each thread will wait forever for the
	other. Can only be resoved by
	better synchronisation of objects. ie
	associate a single mutex to the
	ownership of any part of the group.

Planning

STRIPS (Stanford Research Institute **Problem Solver)**

Formal language that assumes that all conditions not stated to be true are false

Planning is a process of divising a

sequence of actions to achieve a goal. Pathfinding is an example of planning

Uses actions, states and goals

In language can be expressed as logical statements like At(B). They can be combined like At(door) AND holding(key)

Actions can be specified in terms of preconditions. Like Move(A, B), Preconditions: At(A), Postconditions: not At(A), At(B)

Precondition = entry state

Postcondition = exit state

Finite State Machines (FSM)

FSMS model states, transitions and actions

Probabl-	Describe any FSM which
istic FSM	includes probabilities
	Probabilities are placed on transitions out of states

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Not published yet. Last updated 3rd May, 2020. Page 5 of 9.

Cheatography

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Finite S	State Machines (FSM) (cont)	Finite Sta	te Machines (FSM) (cont)	Resource I	Management
	Can have an output state which has a probability associated with it.		- May lead to code re-use since a task could be used in several different situations	Resourc- e/Asset Asset	Any file that is loaded and used by elements in the game PRogramming involved in
	Multiple output states with probab- ility scores used to select between		To avoid code repitition allow the re-use of FSMs.	Manage- ment	loading and working with asset files
	them Probabilities could be fixed or could change over time. Can		The hierarchy of states can produce behaviour unique to an agent even if states are shared	Resource Template	Template that stores the information about the assets in the game.
Stac-	extend probabilities in lots of ways e.g. trigger functions. Track past states using a stack		with other agents. It is possible to swap FSMs in and out.	Resource Ioading issues	System automatically loads all the level resources at setup time. No hard coding
k-(- based FSM)			This can be done with any one of the FSM layers.		Repeatition of resource loading. Therefore, need to
,	Stacks are pushed on and popped off the stack at transitions. This		Hence an agent could exhibit different implementations of a		already loaded.
means that an agent can be inter			different combat FSMs.		demand when entity is needed
	upted and later return to a previous state.		A state could have sub states This can bypass the need to	Shared Resour-	Find if resource has already been loaded. Can serach the
	simple FSM than a standard FSM but not always appropriate tor return to a previous state.		have a new FSM but avoid doing it too much or else it can lead to the FSM becoming broken.	ces	Use hash map instead for efficency. Could use UIDs like with entities.
Hier- acr- chical FSM	A state may link to another FSM or set of FSMs	Subs- umption FSM	Intelligent behaviour can be built from a collection of simple machines.	Resource Destru- ction	Could destroy all objects at the end of level
1 OIII	Transition from a state leads to a brand new FSM. Use the stack to		Decompose complex behaviour into simple modules, operations		Could destroy exlicitly so each entity has a delete function.
	store the initiating state. If control is passed down the		The modules are implemented as layers of FSMs	Track Resour- ces	Track resources and delete them when they're not being used.
	hierarchy then the new FSM starts at its own initial state. Allow you to identify and separate out behaviour or tasks. Helps reduce size and complexity of a FSM		Thje layers of FSMs all operate at the same time.	Smart Pointers	Pointer that manages its own memory and atomatically
			Lower layers deal with short- term goals and higher layers		detect the reference count which is increased/decreased according to the reference
	Record the original state and any associated data because control may pass back at some point.		Lower layers have priority		count.
	By Jonathan_Walsh1999 cheatography.com/jonathan- walsh1999/	Not publis Last upda Page 6 of	hed yet. ted 3rd May, 2020. 9.	Sponsored Measure yo	by Readable.com our website readability! able.com

https://readable.com

Cheatography

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Resource	Management (cont)
Refe- rence count issues	If reference count reaches 0 they are deleted and may need to be used later on
	Reloading can cause stutter in game, which we want to avoid.
	To deal with this issue we can store a single persistent reference throughout the game.
Scripting	for Games
Why Script- ing	Ease of development - Less prone to erros and less intricate
	Much easier to change and test
	No recompilation, change at runtime
	Think about Unity - Use scripts to control entities(game objects) player as an example
Scri- pting (pros/- cons)	- Performance - Scriping language often interpreted. Can be 10x slower than C++
	- No control of memory management can cause issues
	- Limited tool support
	- Hard to spot errors
	- Need to write interface to our C++
	Don't neccessarly need to use scripting languages
	Consider language based on performance needs and memory footprint, feature set etc.
Python	Portable, interpreted, OO progra- mming language
	By Jonathan_Walsh1999

walsh1999/

Scripting for Games (cont)

	Dynamically typed
	Automatic garbage collection
	Blocks are defined by indentation
Lua	Lightweight scrupting language
	Not OO
	Small/Simple feature set
	Small memory
	Small but powerful feature set
	Dynamically typed
	Only one kind of data structure - the table
	Simple integration with C API
	Less high level than Python
	Rather niche language outside games
	Better performance, less memory use
	Simple interface for C and C++
	Lends itself well to game entity scripting
	Interfacing LUa with C++ is fairly simple since Lua is itself a C program and has a direct C API.
Cellul	ar Automata

Cellular Are machines which model Automata problems as a set of discrete cells. Game of John Conway Life Uses a 2D grid as a map to lay

out the actions of the game.

Cellular A	utomata	(cont)

	Binary cells used to represent entities on the map with either alive or empty where empty is dead.
	Each cell only considers its 8 neighbouring cells: orthogonal and diagonal
	All cells are examined simultane- ously
	Each cell considered in its own right.
Game of life rules	A live cell with less than two live neighbours dies. Analogous to loneliness or underpopulation. A live cell with more than three live neighbours dies. Analogous to overpoulation or crowding. A live cell with two or three live neighbours survives. It becomes part of the next generation of cells. An empty cell with three neighbours becomes a live cell.
	Need to seed the system with alive cells to start the game otherwise nothing happens.

Not published yet. Last updated 3rd May, 2020. Page 7 of 9.

Terrain Analysis (cont)

Cheatography

Cellular Automata (cont)

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Cellular /	Automata (cont)	Terrain Ar	nalysis (cont)	Terrain	Analysis (cont)
Rules	1. A live cell with less than two live		Difficult to generalise		The region is
	Ineighbours dies. Analogous to Ioneliness or underpopulation. A live cell with more than three live neighbours dies. Analogous to overpoulation or crowding. A live cell with two or three live neighbours survives. It becomes part of the next generation of cells. An empty cell with three		Typically custom built	Convoy	
I			General points can be made	Hulls	Easy to reaso
יי כ ק ק		Initial Analysis	Need to decide the attributes being used in the reasoning. Cannot recognise a choke point unless you hae already decided that these are of use to your game.	Choke points	eed to know winside the cor Use an influer grow.Each re by a uniform a that overlap a
r	neighbours becomes a live cell.	oints	neasoning using waypoints		choke points.
	 A live cell with more than three live neighbours dies. Analogous to overpoulation or crowding. 		Need a representation of the world.		Choke points show where to
: r	 A live cell with two or three live neighbours survives. It becomes 		For each waypoint calculate its offensive and defensive value		by tracing alo region going a
F	part of the next generation of cells.		Directional information needed		direct line of s
4. An empty cell with three neighbours becomes a live cell. Refer to lecture powerpoint for game of life examples			Can take various factors into consideration including cover,		point.
		Static	lack of target etc. Some static analysis is		for terrain ana locations such
Terrain Analysis		and Dynamic	comparatively easy. Hills shore etc.		points, buildin or staging are
Applica- bility	Wide variety of approaches. From Team based games,	- Prepro- cessing			
	squads, enemy AI, moving into		This can be pre-processed		
	cover, adopting to a good firing position etc.		More difficult with dynamic terrain though		
Specific Requir- ements for	Representation of terrain	Cluster- ing	A strategory game needs to be able to recognise dynamic areas like towns and forests.		
terrain analysis					
	Reason about that represent-				

ation

By Jonathan_Walsh1999

cheatography.com/jonathanwalsh1999/

Not published yet. Last updated 3rd May, 2020. Page 8 of 9.

Sponsored by Readable.com Measure your website readability! https://readable.com

The region is complex. Better to convert into convex hull.

eed to know what points are inside the convex hull.

Use an influence that can

grow.Each region is surrounded by a uniform area. Arny areas that overlap are considered to be

Choke points can be extended to show where to hide. This is done by tracing along the edge of a region going away from the choke point until there is no direct line of sight to the choke

Influence maps have been used for terrain analysis to identify locations such as resource points, building routes for attack or staging areas for attack.

Easy to reason with.

by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Cheatography

_			
Terrain /	Analy	eie (cont)
i ci i airi i	-uncary	313 (cont)

Cover	Simplest case is single opponent
behind	firing at you and you track a line
objects	of sight to the edges of the object.
	Any point in between the two
	edge points is in cover. Can be
	used for multiple opponents.
	Perfect location for cover can be
	calculated by calculating the
	centre of gravity of the object.
	Assume that the object is 2D and
	that mass is evenly distributed.
	Simply trace a line from centre to
	oppoent or opponents

Turing defined a class of Turing abstract machines now called Aproach **Turing Machines** Turing is breaking maths down to its most basic operations. Turing Recasts this idea as a machine Machine he supposes can perform all of the functions that the man does. Turing defined a class of of abstract machines now called Turing Machines. A mathematical model of computation that defines an abstract machine which manipulates symbols on a strip of tape according to a table of rows.

Turing Machine (cont)

Rele- vance to comput ers	Turing machines can do recurs- ions, add and do functions. You can create any mathematical operation we know about using these basic operations.
Univ- ersal TM	A basic TM can compute only one particular function. Where Universal TM is one which can simulate any other machine.
Turing's Thesis	The definition of computation is "something which can be done by TM".
Church	Demonstrated that any comput- ation can be done using Lambda calculus.
Issues with TM	The halting problem: the determination of whether a TM will come to a halt given a particular program. Disproof by showing a contraction. It posits the existence of a program to solve the Halting Problem and then demonstrates that it would lead to a contradiction.
Proof	Testing proves in general halting problem cannot be solved. The reason is that it gives rise to an inherent contra- diction.
Humans	Human minds might be Universal TMS as it has been argued that a Universal TM should in principle be capable of intelligence.

Turing Machine (cont)

Real compu ters	Universal TM is comparable to real computer. Anything that a real computer can compute a TM can compute. It is easier to describe certain algorithms using a TM than using a real computer.
	Universal TM are unbounded with infinite space, where computers are bounded both time and space are limited. TM express algorithms in general terms where as a real computer needs to consider other things such as precision and error conditions.
	A TM uses a sequential tape. A real computer uses registers and random access storage. TMs do not model concurrency easily i.e. different tasks performing at the same time.

C

By Jonathan_Walsh1999 cheatography.com/jonathan-

walsh1999/

Not published yet. Last updated 3rd May, 2020. Page 9 of 9.