
Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Entity IDs And Commun ication

Forms
of
Entity
Identi ‐
fic ati ‐
on:

Pointers, Names, Entity UIDs
(Evaluate these)

Entity
Pointe ‐
rs(pro ‐
s/c ons)

Problems occur when entities
are destroyed. For example
when an entity high up in the
chain dies, therefore, making the
pointer invalid. Can lead to
exceptions

Entity
UIDs(U
nique
Identi ‐
fier

+ Holds a UID instead of a
pointer

 + Uses a function to safely
convert into pointer

 + An error is returned when
resource doesn't exist. A lot
easier to handle than invalid
pointers.

 + Hash tables are used which
provide efficency. Keys are
converted into integers.

 - Collisions can occur in hash
tables

Entity
Messag
ing

Better to send messages to
entities than to use getters and
setters

 + Entities only need to know
messaging types

 + Can make intera ctions more
complex, by having replies for
example.

 Need a system messenger class.
Avoid using new and delete. Use
statics

Entity IDs And Commun ication (cont)

 - Finding the position of another entity can
be clumsy

 - There is latency between responses

 + Entity UIDs can be converted to pointers
to access generic or commonly used data

 + Could implement an Immedi ate Message
function where message is sent directly to
entity and return value is response

Compon ent -Based Entities

Problems
with OO

Tight couping between parent
and child. Features of parents
affect or limit the features of
children

 Hierar chies are static, games
need more flexib ility

 Multiple inheri tance can be
use but causes confusion

Comp ‐
one nt- ‐
based
Archit ‐
ect ure

Entity holds a dynamic list of
components

 Each component has an
update function called when
entity is updated

 Messages to entity passed to
each component. e.g. health
component reacts to a
damage message

 Send messages to compon ‐
ent s/e ntities within the same
entity

Compon ent -Based Entities (cont)

 +Litte coupling between components

 +Easy to add/remove functi onality

 +Simple to concep tualise

 +Easily built from script /data files

 -Much more message passing

 -May be too flexible

Camera Projec tio n/P icking

Model
Space

Entity's mesh is defined in its
own local coordinate system

World
Space

Transf orming a model in the
world

World
Matrix

Transf orming model from
model space to world space
with a matrix.

Camera
Space

The scene as view from the
camera's position.

View
Matrix

Transf orm ation from world
space to camera space is done
with the view matrix.

Camera
to
Viewport
space

Project camera space into 2D.

 This is done with the projection
matrix

Proj ‐
ection
Details

Near clip distance is from
camera position to viewport.

 Far clip distance is furthest
we can see from camera
position.

 FOV - field of view

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 1 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Tools Progra mming

Tool
Chain

Sequence of tools needed to
convert raw assets through to
usable game data.

Influence Map

Infl ‐
uence
Map

Way of viewing the distri bution of
control over a map.

 Grid out the world and provide a
numerical estimate of the
influence of every unit on the cell
it is in and its neighh bouring cells.

 Influence diminishes over
distance.

 The influence of all units in the
game are summed in order to
generate an influence map which
is a repres ent ation of influence
and location which can be used
for strategic analysis.

 An example can be using the
euclidean distance to calculate
influence on each square /cell.
influence = 0.5

 Calcul ation is done for every unit
with positive values used for
friendly units and negative for
enemies.

Front
line

Line that can be traces at the edge
of positive and negative cells.

Conc ‐
ent ‐
ration
of
forces

The areas with the highest
positive values are where the
influence of the friendly forces are
strongest.

Influence Map (cont)

Maths The influence falls off over
distance which can be linear or
expone ntial with distance.
Influence is repres ented by the
type of weapons for example.
ie a sword is less powerful than
a gun

 Because inflen uence never
reaches 0, use a cut off point
for very small values to avoid
unnece ssary calcul ations.

Desi rab ‐
ility

A weighted sum which would
change accord ingly to the
context or type of decision.

Time &
distance

Even though influence
diminishes over distance it can
still have an impact on
decisions taken by other units
far away

Time &
probab ‐
ility

Can suggest how we use
influence maps to represent
potential actions

Inte rpr ‐
eting
Results

Influence state decision such
as combat want to choose acell
in which enemy is weak but in
which we are strong

 Examine the distance of units to
the front-line both friendly and
enemy which can help indicate
areas to which we should be
paying special attention to.

Influence Map (cont)

Terr
ain

Can increase or decrease the
propag ation of influence according
to terrain. e.g. take obstacles into
account

Blackboard Model

Blac ‐
kboard
Model

Is a decision making method.

 Problems and all workings out
are written on the blackb oard.

 The insight is that a collective
unders tanding of a problem may
be better than an individual
unders tan ding.

 May be more efficient to have
many experts each with a partial
unders tading of a problem than
one expert that has a full unders ‐
tan ding.

Spec ‐
ial ists

No specialist unders tands the
whole problem

 Component that can operate on
the data written p on the blackb ‐
oard. The area of expertise of
each specialist is narrow. A
specialist may indicatate a
relevance value indicating how
they can deal with the problem.

 No commun ication allowed
between experts. Everything
goes through the medium of the
blackb oard.

Arbi ter Selects which of the specia lists to
execute

Arch ‐
ite ‐
cture

2 types of archit ecture

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 2 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

di stance

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Blackboard Model (cont)

 A) Multiple specia lists each with
their own area of expiertie. It is
assumed that only one specialist at
a time will be dealing with a specific
problem.

 B) Specia lists with overla pping
areas of expertise. More than 1
specialist can signal relevance.
More than one specialist can deal
with a problem at a time.

Char
act ‐
eri ‐
stics

Blackboard offers flexib ility

 Order of reasoning not pre-de ter ‐
mined

 At any given point that most
relevant specialist will be selected

 Specia lists can act in a variety of
ways like requesting more data etc.

 A specialist need not know how its
assertions or signals are going to be
used.

 The specialist is only concerned
with fulfilling a request.

Production Systems

Know ‐
ledge
Repres ‐
ent ation

Knowledge is repres ent ation
and the methods for manipu ‐
lating it

Proc ‐
edural
Knowle ‐
dge

Is operat ional ie what to do
when

 Most common method is
production rules

Prod ‐
uction
Rules

New knowledge is derived
using various reasoning
mechan isms. IF AND THEN

Production Systems (cont)

 A deductive argument can only bring out
what is already implicit in it premises but
can give rise to questions.

 Reasoning is carried out by an interp reter

 2 methods: forward chaining from
assertions and backward chaining from
hypotheses

Trees

Decision
Trees

A decision tree is way of
repres enting knowledge.

 A decision tree is a way of
using inputs to predict future
outputs.

 It is a classi fic ation method,
decision trees learn from
examples using induct ions.
They can deal with uncert ainty.
thye dont use ranges because
of large numbers of branching
altern atives.

Sequ ‐
ence

Execute the first node that has
not yet succeeded. Keep
executing a task until it returns
a success. Any failure in the
sequence is a failure overall.
Fix or continue to next
sequence.

Sele ctor Selects one child node to
execute. Could be random or
some sort of control
mechanism.

Deco ‐
rator

Single child node. Allows for
other types of operation such
as repeti tion, filter or an
inventor.

ID3
algori ‐
thms

Note: Look at Tree PP for
method

Entity Update and Rendering

Entity
Update

Each entity has its own update
function

 Can be called every frame or
less frequently

 Reciev es/ pro cesses messages

 Send messages

 Decision making

 + Entity behaviour and state
collected together

 +Easy to maintain

 + Easier to comprehend
behaviour

 - Overall game behaviour is
distri buted, can get unexpected
intera ction

 - Messaging between entities
can be long-w inded

Scene
Update

In the TL-Engine a single global
update function is used

 Can become bloate d/hard to
maintain

 No attempt to encaps ulate
behaviour

 Using entity -based update still
uses Scene Update to do
certain global update work

 + Global function easy to work
with

 - Model state tends to become
a set of globals

Entity
Render ‐
ing

Each entity gets its own render
function. A function that's called
every frame to update animat ‐
ions, positions, textures etc.

Pre/Post
Render ‐
ing

Called for entities before and
after the main rendering calls.
E.g. Calcul ating camera view
matrix

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 3 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Entity Update and Rendering (cont)

Dot Product Formula X.T = |X||T| cos(B)

Text-based Game Data

Hard -co ‐
ding

Embedding of data in
program code

 - Requires recomp ilation to
change data which can be
slow for large project.

 - Cannot be done at runtime

 To improve this we can use
data files.

 + Hard coded data is stored
in a text format which means
it is human readab le/ wri table.

 Text based data will need to
be parsed at run-time.

Binary
data files

Can help in large data sets
as it's quicker to parse but
they're not human readable

Issues
with Text-
based
data

Slower than using hard-c ‐
oding

 Text need more storage than
binary

 Need good test cases to
have good text valida tion.

 Additional code develo pment
required

XML
(eXten ‐
sible Mark-
up
Language

Structured data

 Not a progra mming language

 Stream -or iented parsing -
Uses callbacks as tags that
are opened and closed

Text-based Game Data (cont)

 Tree-t rav ersal parsing - Reads
entire document and passes back
as a complete hierar chical
structure

XML
Disadv
ant ‐
ages

The redundancy of syntax causes
higher storage making parsing
take longer.

 XML is less readable compared
to other text-based document
formats such as JSON. XML
doesn't support arrays.

 XML files are usually larger due
to being verbose therefore it
totally depends on who is writing
it.

Adva ‐
ntages
XML

XML is platform and progra ‐
mming language indepe ndent
therfore can be used by any
system and supports hardware
and software change.

 Support Unicode and intern ‐
ational encoding standard for use
with different languages and
scripts.

 The data stored and transp orted
using XML can be changed at
any point of time without affecting
the data presented. XML allows
validation using DTD and
Schema. This validation ensures
that the XML document is free
from any syntax error.

Text-based Game Data (cont)

 XML simpli fie sdata sharing between
various systems because of its platform
indepe ndent nature.

Concurrent Progra mming

Conc ‐
urrent
Program

Simult ane ously executes
multiple intera cting comput ‐
ational tasks. Not the same as
parallel program

Proc ‐
ess es/ ‐
thr eads

The tasks may be separate
programs or a set of proces ‐
ses /th reads created by a single
program.

 Focus of concurrent progra ‐
mming is the intera ction
between tasks and the coordi ‐
nation of shared resoruces.

Parallel
Progra ‐
mming

Simult ane ously exutes a single
task across several processors

Proc ‐
esses

A program is just a passive set
of instuc tions whereas a
process is an active instance of
a program, acually being
executed

 Each process has a distinct set
of resources. A section of
memory (RAM, cache). System
Resources. Security settings
(perms), processor state

Thre ads A program may in turn contain
several threads of execution

 Threads conatin process
resources Look Above ^^

 Processes can be single
threaded or multi- thr eaded

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 4 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Concurrent Progra mming (cont)

 Multi- thr eaded can be more
efficent if done right

 Multi- thr eaded processes are
more efficient than multi- ‐
process programs due to less
setup and commun ication
since threads share resources.

Data
Coordi ‐
nat ion

Major issue with concurrent is
preventing concurrent
processes from interf ering with
eachother.

Resource
Coordi ‐
nat ion

Preventing sharing of
resources from interf ering. e.g.
One process rewrites content
of the file while another is in
the process of reading it.

Race
Condit ‐
ions

2 processes racing to
complete their task first

 A flaw in a concurrent system
where the exact sequence or
timing of events affects the
output.

 Hard to track down due to
shared data/r eso urces being
accesses almost simult ane ‐
ously.

Lock ing A resource, piece of data or
section of code can be locked
to a single process or thread.

Critical
Section

A section of code that can only
be accessed by a single thread
at a time.. The section of code
is aasumed to be accesing
data that needs careful synchr ‐
oni sation. Only locks code not
data.

Concurrent Progra mming (cont)

Mutex An object that can only be owned
by a single thread on a single
process at a time.

Sema ‐
phore

An obkect that can be held by up
to N threads simult ane ously.
Section can be shared by a few
processes but not an unlimited
number, which limits the number
resources that can be opened
simult ane ously.

Timers Can pause a thread until a certain
time or repeatedly wake/sleep a
thread.

Bloc ‐
king

When a thread or process is
prevented from accessing data or
executing code due to synchr oni ‐
sation object is said to be
blocked.

 When a thread is blocked wait for
the code/data to become
available by allowing the thread
to stall (sleep) , which loses the
advantages of concur rency. And
can add a timeout to help limit
how long to wait. Or simply skip
the task that requires the blocked
data/code

Concurrent Progra mming (cont)

Dead
locks

When 2 threads try to lock 2
resources they stall waiting for
eachother causing a deadlock and
each thread will wait forever for the
other. Can only be resoved by
better synchr oni sation of objects. ie
associate a single mutex to the
ownership of any part of the group.

Planning

STRIPS (Stanford Research Institute
Problem Solver)

 Formal language that assumes that all
conditions not stated to be true are false

 Planning is a process of divising a
sequence of actions to achieve a goal.

 Pathfi nding is an example of planning

 Uses actions, states and goals

 In language can be expressed as logical
statements like At(B). They can be
combined like At(door) AND holdin g(key)

 Actions can be specified in terms of
precon dit ions. Like Move(A, B), Precon dit ‐
ions: At(A), Postco ndi tions: not At(A), At(B)

 Precon dition = entry state

 Postco ndition = exit state

Finite State Machines (FSM)

FSMS model states, transi tions and actions

Prob abl ‐
istic FSM

Describe any FSM which
includes probab ilities

 Probab ilities are placed on
transi tions out of states

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 5 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Finite State Machines (FSM) (cont)

 Can have an output state which
has a probab ility associated with
it.

 Multiple output states with probab ‐
ility scores used to select between
them

 Probab ilities could be fixed or
could change over time. Can
extend probab ilities in lots of ways
e.g. trigger functions.

Stac ‐
k-(‐
based
FSM)

Track past states using a stack

 Stacks are pushed on and popped
off the stack at transi tions. This
means that an agent can be interr ‐
upted and later return to a
previous state.

 Stack based FSM can produce a
simple FSM than a standard FSM
but not always approp riate tor
return to a previous state.

Hier ‐
acr ‐
chical
FSM

A state may link to another FSM or
set of FSMs

 Transition from a state leads to a
brand new FSM. Use the stack to
store the initiating state.

 If control is passed down the
hierarchy then the new FSM starts
at its own initial state. Allow you to
identify and separate out
behaviour or tasks. Helps reduce
size and complexity of a FSM

 Record the original state and any
associated data because control
may pass back at some point.

Finite State Machines (FSM) (cont)

 - May lead to code re-use since
a task could be used in several
different situations

 To avoid code repitition allow
the re-use of FSMs.

 The hierarchy of states can
produce behaviour unique to an
agent even if states are shared
with other agents.

 It is possible to swap FSMs in
and out.

 This can be done with any one
of the FSM layers.

 Hence an agent could exhibit
different implem ent ations of a
task in different situat ions, e.g.
different combat FSMs.

 A state could have sub states

 This can bypass the need to
have a new FSM but avoid
doing it too much or else it can
lead to the FSM becoming
broken.

Subs ‐
umption
FSM

Intell igent behaviour can be built
from a collection of simple
machines.

 Decompose complex behaviour
into simple modules, operations
or tasks.

 The modules are implem ented
as layers of FSMs

 Thje layers of FSMs all operate
at the same time.

 Lower layers deal with short-
term goals and higher layers
deal with long-term goals.

 Lower layers have priority

Resource Management

Reso urc ‐
e/A sset

Any file that is loaded and
used by elements in the game

Asset
Manage ‐
ment

PRogra mming involved in
loading and working with asset
files

Resource
Template

Template that stores the
inform ation about the assets
in the game.

Resource
loading
issues

System automa tically loads all
the level resources at setup
time. No hard coding

 Repeat ition of resource
loading. Therefore, need to
identify resources that have
already loaded.

 Could load resources on
demand when entity is needed

Shared
Resour ‐
ces

Find if resource has already
been loaded. Can serach the
entire list but may be slow

 Use hash map instead for
efficency. Could use UIDs like
with entities.

Resource
Destru ‐
ction

Could destroy all objects at the
end of level

 Could destroy exlicitly so each
entity has a delete function.

Track
Resour ‐
ces

Track resources and delete
them when they're not being
used.

Smart
Pointers

Pointer that manages its own
memory and atomat ically
detect the reference count
which is increa sed /de creased
according to the reference
count.

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 6 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Resource Management (cont)

Refe ‐
rence
count
issues

If reference count reaches 0 they
are deleted and may need to be
used later on

 Reloading can cause stutter in
game, which we want to avoid.

 To deal with this issue we can
store a single persistent
reference throughout the game.

Scripting for Games

Why
Script ‐
ing

Ease of develo pment - Less
prone to erros and less intricate

 Much easier to change and test

 No recomp ila tion, change at
runtime

 Think about Unity - Use scripts to
control entiti es(game objects)
player as an example

Scri ‐
pting
(pros/ ‐
cons)

- Perfor mance - Scriping
language often interp reted. Can
be 10x slower than C++

 - No control of memory
management can cause issues

 - Limited tool support

 - Hard to spot errors

 - Need to write interface to our
c++

 Don't necces sarly need to use
scripting languages

 Consider language based on
perfor mance needs and memory
footprint, feature set etc.

Python Portable, interp reted, OO progra ‐
mming language

Scripting for Games (cont)

 Dynami cally typed

 Automatic garbage collection

 Blocks are defined by indent ation

Lua Lightw eight scrupting language

 Not OO

 Small/ Simple feature set

 Small memory

 Small but powerful feature set

 Dynami cally typed

 Only one kind of data structure - the
table

 Simple integr ation with C API

 Less high level than Python

 Rather niche language outside
games

 Better perfor mance, less memory
use

 Simple interface for C and C++

 Lends itself well to game entity
scripting

 Interf acing LUa with C++ is fairly
simple since Lua is itself a C
program and has a direct C API.

Cellular Automata

Cellular
Automata

Are machines which model
problems as a set of discrete
cells.

Game of
Life

John Conway

 Uses a 2D grid as a map to lay
out the actions of the game.

Cellular Automata (cont)

 Binary cells used to represent
entities on the map with either
alive or empty where empty is
dead.

 Each cell only considers its 8
neighb ouring cells: orthogonal and
diagonal

 All cells are examined simult ane ‐
ously

 Each cell considered in its own
right.

Game
of life
rules

A live cell with less than two live
neighbours dies. Analogous to
loneliness or underp opu lation. A
live cell with more than three live
neighbours dies. Analogous to
overpo ulation or crowding. A live
cell with two or three live
neighbours survives. It becomes
part of the next generation of cells.
An empty cell with three
neighbours becomes a live cell.

 Need to seed the system with
alive cells to start the game
otherwise nothing happens.

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 7 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Cellular Automata (cont)

Rules 1. A live cell with less than two live
neighbours dies. Analogous to
loneliness or underp opu lation. A
live cell with more than three live
neighbours dies. Analogous to
overpo ulation or crowding. A live
cell with two or three live
neighbours survives. It becomes
part of the next generation of cells.
An empty cell with three
neighbours becomes a live cell.

 2. A live cell with more than three
live neighbours dies. Analogous to
overpo ulation or crowding.

 3. A live cell with two or three live
neighbours survives. It becomes
part of the next generation of cells.

 4. An empty cell with three
neighbours becomes a live cell.

 Refer to lecture powerpoint for
game of life examples

Terrain Analysis

Appl ica ‐
bil ity

Wide variety of approa ches.
From Team based games,
squads, enemy AI, moving into
cover, adopting to a good firing
position etc.

Specific
Requir ‐
ements
for
terrain
analysis

Repres ent ation of terrain

 Reason about that repres ent ‐
ation

Terrain Analysis (cont)

 Difficult to generalise

 Typically custom built

 General points can be made

Initial
Analysis

Need to decide the attributes
being used in the reasoning.
Cannot recognise a choke point
unless you hae already
decided that these are of use to
your game.

Wayp ‐
oints

Reasoning using waypoints

 Need a repres ent ation of the
world.

 For each waypoint calculate its
offensive and defensive value

 Direct ional inform ation needed

 Can take various factors into
consid eration including cover,
lack of target etc.

Static
and
Dynamic
- Prepro ‐
ces sing

Some static analysis is
compar atively easy. Hills shore
etc.

 This can be pre-pr ocessed

 More difficult with dynamic
terrain though

Clus ter ‐
ing

A strategory game needs to be
able to recognise dynamic
areas like towns and forests.

Terrain Analysis (cont)

 The region is complex. Better to
convert into convex hull.

Convex
Hulls

Easy to reason with.

 eed to know what points are
inside the convex hull.

Choke
points

Use an influence that can
grow.Each region is surrounded
by a uniform area. Arny areas
that overlap are considered to be
choke points.

 Choke points can be extended to
show where to hide. This is done
by tracing along the edge of a
region going away from the
choke point until there is no
direct line of sight to the choke
point.

 Influence maps have been used
for terrain analysis to identify
locations such as resource
points, building routes for attack
or staging areas for attack.

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 8 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

Games Dev 2 Cheat Sheet
by Jonathan_Walsh1999 via cheatography.com/81859/cs/22597/

Terrain Analysis (cont)

Cover
behind
objects

Simplest case is single opponent
firing at you and you track a line
of sight to the edges of the object.
Any point in between the two
edge points is in cover. Can be
used for multiple opponents.
Perfect location for cover can be
calculated by calcul ating the
centre of gravity of the object.
Assume that the object is 2D and
that mass is evenly distri buted.

 Simply trace a line from centre to
oppoent or opponents

Turing Machine

Turing
Aproach

Turing defined a class of
abstract machines now called
Turing Machines

 Turing is breaking maths down
to its most basic operat ions.

Turing
Machine

Recasts this idea as a machine
he supposes can perform all of
the functions that the man does.

 Turing defined a class of of
abstract machines now called
Turing Machines.

 A mathem atical model of
comput ation that defines an
abstract machine which
manipu lates symbols on a strip
of tape according to a table of
rows.

Turing Machine (cont)

Rele ‐
vance
to
comput
ers

Turing machines can do recurs ‐
ions, add and do functions. You
can create any mathem atical
operation we know about using
these basic operat ions.

Univ ‐
ersal
TM

A basic TM can compute only
one particular function. Where
Universal TM is one which can
simulate any other machine.

Turing's
Thesis

The definition of comput ation is
" som ething which can be done
by TM".

Church Demons trated that any comput ‐
ation can be done using
Lambda calculus.

Issues
with TM

The halting problem: the
determ ination of whether a TM
will come to a halt given a
particular program. Disproof by
showing a contra ction. It posits
the existence of a program to
solve the Halting Problem and
then demons trates that it would
lead to a contra dic tion.

Proof Testing proves in general
halting problem cannot be
solved. The reason is that it
gives rise to an inherent contra ‐
dic tion.

Humans Human minds might be
Universal TMS as it has been
argued that a Universal TM
should in principle be capable of
intell igence.

Turing Machine (cont)

Real
compu
t ers

Universal TM is comparable to
real computer. Anything that a
real computer can compute a
TM can compute. It is easier to
describe certain algorithms
using a TM than using a real
computer.

 Universal TM are unbounded
with infinite space, where
computers are bounded both
time and space are limited. TM
express algorithms in general
terms where as a real computer
needs to consider other things
such as precision and error
condit ions.

 A TM uses a sequential tape. A
real computer uses registers and
random access storage. TMs do
not model concur rency easily i.e.
different tasks performing at the
same time.

By Jonathan_Walsh1999
cheatography.com/jonathan-
walsh1999/

Not published yet.
Last updated 3rd May, 2020.
Page 9 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jonathan-walsh1999/
http://www.cheatography.com/jonathan-walsh1999/cheat-sheets/games-dev-2
http://www.cheatography.com/jonathan-walsh1999/
https://readable.com

	Games Dev 2 Cheat Sheet - Page 1
	Entity IDs And Communication
	Camera Projection/Picking
	Component-Based Entities

	Games Dev 2 Cheat Sheet - Page 2
	Tools Programming
	Influence Map
	Blackboard Model

	Games Dev 2 Cheat Sheet - Page 3
	Entity Update and Rendering
	Trees
	Production Systems

	Games Dev 2 Cheat Sheet - Page 4
	Text-based Game Data
	Concurrent Programming

	Games Dev 2 Cheat Sheet - Page 5
	Planning
	Finite State Machines (FSM)

	Games Dev 2 Cheat Sheet - Page 6
	Resource Management

	Games Dev 2 Cheat Sheet - Page 7
	Scripting for Games
	Cellular Automata

	Games Dev 2 Cheat Sheet - Page 8
	Terrain Analysis

	Games Dev 2 Cheat Sheet - Page 9
	Turing Machine

