

Laws of Boolean Algebra Cheat Sheet

by johnshamoon via cheatography.com/33783/cs/10542/

Identities		
0 + X = X		
$0 \cdot X = 0$		
1 + X = 1		
1 · X = X		
X + X = X		
$X \cdot X = X$		

Negation	
X + ~X = 1	
~0 = 1	
~1 = 0	
~~X = X	
X · ~X = 0	

Laws		
Communative Law	$A \cdot B = B \cdot A$	
	A + B = B + A	
Associative Law	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	
	A + (B + C) = (A + B) + C	
Distributive Law	$A \cdot (B + C) = A \cdot B + A \cdot C$	
	$A + B \cdot C = (A+B)(A+C)$	

De Morgan's Laws				
~(X · Y)	= _{X +} Y			
~(X + Y)	= _X . Y			
\sim (X · Y · Z)	= _{X +} Y + ~Z			
\sim (X + Y + Z)	= _X . Y · ~Z			

Theorems

Theorem 1

$$X + X \cdot Y = X$$

Theorem 2

$$X + \sim X \cdot Y = X + Y$$

Theorem 3

$$X \cdot Y + X \cdot Z + Y \cdot Z = X \cdot Y + X \cdot Z$$

Theorem 4

$$X(X + Y) = X$$

Theorem 5

$$X(\sim X + Y) = X \cdot Y$$

Theorem 6

$$(X + Y)(X + \sim Y) = X$$

Theorem 7

$$(X + A)(X + A) = X \cdot A + X \cdot A$$

Theorem 8

$$(X+Y)(X+Z)(Y+Z)=(X+Y)(\!\!\!/X+Z)$$

By johnshamoon

Published 16th January, 2017. Last updated 16th January, 2017.

Page 1 of 1.

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/johnshamoon/