\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{jjovann} \pdfinfo{ /Title (exam-2-0.pdf) /Creator (Cheatography) /Author (jjovann) /Subject (Exam 2.0 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{2B2B2B} \definecolor{LightBackground}{HTML}{F8F8F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Exam 2.0 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{jjovann} via \textcolor{DarkBackground}{\uline{cheatography.com/67730/cs/18924/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}jjovann \\ \uline{cheatography.com/jjovann} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 22nd February, 2019.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•There are 5 main types of blood vessels \newline % Row Count 1 (+ 1) –Arteries \newline % Row Count 2 (+ 1) –Arterioles \newline % Row Count 3 (+ 1) –Capillaries \newline % Row Count 4 (+ 1) –Venules \newline % Row Count 5 (+ 1) –Veins% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Vessel Types}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Veins \newline % Row Count 1 (+ 1) – carry blood towardsthe heart% Row Count 2 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.60195 cm} x{1.78503 cm} x{1.19002 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn % Row 0 \SetRowColor{LightBackground} Arteries (Tunic Intima) & Both & Vein (Tunic Intima) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} • Internal elastic membrane & • Endothelium & \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} & • Subendothelial layer & \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} Arteries (Tunic Media) & smooth muscle and elastic fibers & Vein (Tunic Media) \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{• External elastic membrane} \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} Arteries (Tunic Externae) & (collagen fibers) & Vein (Tunic Externae) \tn % Row Count 14 (+ 3) % Row 6 \SetRowColor{LightBackground} & • Vasa vasorum & \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Arterioles \newline % Row Count 1 (+ 1) –Regulate blood flow to the capillaries \newline % Row Count 2 (+ 1) –They are the primary "adjustable nozzles" across which the greatest drop in pressure occurs.% Row Count 4 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Capillaries empty into venules. \newline % Row Count 1 (+ 1) •The venules empty into veins \newline % Row Count 2 (+ 1) –Because intravenous pressure is so low, veins have valves to keep blood flowing in only 1 direction. \newline % Row Count 5 (+ 3) •When exposed to higher than normal pressures, the valves in veins can become incompetent allowing blood to pool (varicose veins).% Row Count 8 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Beds: Two Types of Vessels}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•True capillaries \newline % Row Count 1 (+ 1) –10 to 100 exchange vessels per capillary bed \newline % Row Count 2 (+ 1) –Branch off metarteriole or terminal arteriole% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Exchange}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Diffusion \newline % Row Count 1 (+ 1) •The movement of a substance from an area of high concentration to an area of low concentration \newline % Row Count 3 (+ 2) •In all capillaries, excluding the brain, diffusion is the most important means in net solute exchange between the plasma and interstitial fluid% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fluid Exchange - Starling Forces}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Filtration \newline % Row Count 1 (+ 1) •the movement of fluid (plasma) through the walls of the capillary and into the interstitial fluid. \newline % Row Count 4 (+ 3) •Two pressures promote filtration: \newline % Row Count 5 (+ 1) –Blood hydrostatic pressure (BHP) generated by the pumping action of the heart \newline % Row Count 7 (+ 2) –Interstitial fluid osmotic pressure (IFOP) is due to the presence of dissolved solutes in the interstitial fluid% Row Count 10 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Gas And Nutrient Exchange}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Gases and these other substances simply move into or out of the capillary down their concentration gradient.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Opposition to flow \newline % Row Count 1 (+ 1) –Measure of amount of friction blood encounters with vessel walls, generally in peripheral (systemic) circulation \newline % Row Count 4 (+ 3) –Three important sources of resistance \newline % Row Count 5 (+ 1) •Blood viscosity \newline % Row Count 6 (+ 1) •Total blood vessel length \newline % Row Count 7 (+ 1) •Blood vessel diameter% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Viscosity}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The "stickiness" of blood due to formed elements and plasma proteins \newline % Row Count 2 (+ 2) •Increased viscosity = increased resistance% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Systemic Vascular Resistance (SVR)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Also called Total Peripheral Resistance (TPR) \newline % Row Count 1 (+ 1) –All the vascular resistances offered by the systemic blood vessels \newline % Row Count 3 (+ 2) –Also called Total Peripheral Resistance (TPR) \newline % Row Count 4 (+ 1) –A major function of arterioles is the control of SVR \newline % Row Count 6 (+ 2) –Pathos is atherosclerosis% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Arterial Blood Pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Systolic pressure: highest pressure obtained in arteries during ventricular ejection \newline % Row Count 2 (+ 2) •Diastolic pressure: lowest level of pressure obtained in the arteries during ventricular diastole \newline % Row Count 5 (+ 3) •Pulse pressure = difference between systolic and diastolic pressure \newline % Row Count 7 (+ 2) •Mean arterial pressure (MAP): pressure that propels blood to tissues% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Regulation of BP and Flow}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Control is accomplished through several negative feedback systems \newline % Row Count 2 (+ 2) –BP controlled by adjusting HR, SV, TPR, and blood volume \newline % Row Count 4 (+ 2) –Some systems are rapid for quick adjustment \newline % Row Count 5 (+ 1) •Counteract fluctuations in blood pressure by altering peripheral resistance and CO \newline % Row Count 7 (+ 2) •E.g. – keeps you from passing out from the drop in blood pressure in the brain when you get out of bed \newline % Row Count 10 (+ 3) –Others systems act more slowly \newline % Row Count 11 (+ 1) •Counteracts fluctuations in blood pressure by altering blood volume•These provide long-term regulation \newline % Row Count 14 (+ 3) –The body may also require adjustments in distribution of flow \newline % Row Count 16 (+ 2) •E.g. – when you exercise, a greater percentage of total flow is diverted to skeletal muscle% Row Count 18 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Neural Reflexes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Nervous system regulates blood pressure using negative feedback loops that occur as 2 types of reflexes \newline % Row Count 3 (+ 3) –Baroreceptor reflex \newline % Row Count 4 (+ 1) –Chemoreceptor reflex% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hormonal Regulation of BP}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Regulation of blood pressure and flow is also under the control of several hormones. \newline % Row Count 2 (+ 2) \seqsplit{–Renin-angiotensin-aldosterone} (RAA) system \newline % Row Count 3 (+ 1) –Epinephrine and norepinephrine \newline % Row Count 4 (+ 1) –Antidiuretic hormone \newline % Row Count 5 (+ 1) –Atrial Naturetic Peptide% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antidiuretic hormone (ADH), Vasopressin}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–released from the posterior pituitary gland in response to dehydration or decreased blood volume. \newline % Row Count 3 (+ 3) –Increases water reabsorption in the kidneys which increases blood volume \newline % Row Count 5 (+ 2) –Potent vasoconstrictor% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Metabolic Controls}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Vasodilation of arterioles and relaxation of precapillary sphincters occur in response to local chemical changes \newline % Row Count 3 (+ 3) –Declining tissue O2 \newline % Row Count 4 (+ 1) –Substances from metabolically active tissues (H+, K+, adenosine, and prostaglandins) and inflammatory chemicals% Row Count 7 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Intrinsic and Extrinsic Mechanisms}} \tn % Row 0 \SetRowColor{LightBackground} Intrinsic & Extrinsic \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} autoregulation & • Neuronal or hormonal controls \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} • Metabolic or myogenic controls & • Maintain mean arterial pressure \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} • Distribute blood flow to individual organs and tissues as needed & • Redistribute blood during exercise and thermoregulation \tn % Row Count 9 (+ 4) % Row 4 \SetRowColor{LightBackground} Myogenic & Neuronal \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} • Stretch & Sympathetic tone \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} Metabolic & Hormonal \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} • Endothelins & • Angiotensin II \tn % Row Count 13 (+ 1) % Row 8 \SetRowColor{LightBackground} & • Antidiuretic hormone \tn % Row Count 15 (+ 2) % Row 9 \SetRowColor{white} & • Epinephrine \tn % Row Count 16 (+ 1) % Row 10 \SetRowColor{LightBackground} & • Norepinephrine \tn % Row Count 17 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hypertension}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–defined as elevated systolic blood pressure (SBP), an elevated diastolic blood pressure (DBP), or both. \newline % Row Count 3 (+ 3) –Diastolic pressure is greater than 100 \newline % Row Count 4 (+ 1) –Systolic pressure is greater than 160 \newline % Row Count 5 (+ 1) –Depending on severity, it is classified as pre-hypertension, Stage 1 HTN, or stage 2 HTN% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Shock and Homeostasis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Heart rate \& force increase \newline % Row Count 1 (+ 1) •Vasoconstriction or vasodilation depending on the type of shock \newline % Row Count 3 (+ 2) •ADH released to conserve water \newline % Row Count 4 (+ 1) •Renin releases Angiotensin II \newline % Row Count 5 (+ 1) •Aldosterone released to conserve Na+ \newline % Row Count 6 (+ 1) •ANP inhibited% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Air passing through the respiratory tract traverses the: \newline % Row Count 2 (+ 2) –Nasal cavity \newline % Row Count 3 (+ 1) –Pharynx \newline % Row Count 4 (+ 1) –Larynx \newline % Row Count 5 (+ 1) –Trachea \newline % Row Count 6 (+ 1) –Primary (1o) bronchi \newline % Row Count 7 (+ 1) –Secondary (2o) bronchi \newline % Row Count 8 (+ 1) –Tertiary (3o) bronchi \newline % Row Count 9 (+ 1) –Bronchioles \newline % Row Count 10 (+ 1) –Alveoli (150 million/lung)% Row Count 11 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Nasal Conchae}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•scroll-shaped bony elements forming the upper chambers of the nasal cavities \newline % Row Count 2 (+ 2) –Tucked under each nasal concha is an opening, or meatus \newline % Row Count 4 (+ 2) –Receptors in the olfactory epithelium (used for smell)pierce the bone of the cribriform plate.% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pharynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The pharynx has 3 anatomical regions: \newline % Row Count 1 (+ 1) –Nasopharynx \newline % Row Count 2 (+ 1) –Oropharynx \newline % Row Count 3 (+ 1) –Laryngopharynx% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Laryngopharynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The laryngopharynx lies inferiorly and opens into the larynx (voice box) and the esophagus. \newline % Row Count 2 (+ 2) –It participates in both respiratory and digestive functions.% Row Count 4 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Epiglottis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–a flap of elastic cartilage covered with a mucous membrane \newline % Row Count 2 (+ 2) –The epiglottis guards the entrance of the glottis, the opening between the vocal folds \newline % Row Count 4 (+ 2) •For breathing, it is held anteriorly, then pulled back-ward to close off the glottic opening during swallowing% Row Count 7 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Trachea Cartilage}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The purpose of the semi-rigid cartilage rings in the respiratory tract is to prevent airway collapse during inhalation \newline % Row Count 3 (+ 3) •The tracheal cartilage rings are incomplete posteriorly, facing the esophagus. \newline % Row Count 5 (+ 2) –This allows the esophagus to expand as it moves the bolus of swallowed food toward the stomach \newline % Row Count 7 (+ 2) –Esophageal masses can press into this soft part of the trachea and make it difficult to breathe, or even totally obstruct the airway.% Row Count 10 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bronchi}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The bronchi and bronchioles go through structural changes as they continue to branch and become smaller. \newline % Row Count 3 (+ 3) –The mucous membrane changes cell type and then disappears. \newline % Row Count 5 (+ 2) –The cartilaginous rings become more sparse, and eventually, disappear altogether. \newline % Row Count 7 (+ 2) –As the amount of cartilage rings decrease, smooth muscle content(under the control of the Autonomic Nervous System) increase.% Row Count 10 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Understanding gases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Earths atmosphere is mainly composed of these gases: \newline % Row Count 2 (+ 2) –Nitrogen (N2) 78\% \newline % Row Count 3 (+ 1) –Oxygen (O2) 21\% \newline % Row Count 4 (+ 1) –Carbon Dioxide (CO2) 0.04\% \newline % Row Count 5 (+ 1) –Water Vaporvariable, but on average around 1\%% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Thoracic Cavity Pressure Relationships}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Negative respiratory pressure = less than Patm \newline % Row Count 1 (+ 1) –Positive respiratory pressure = greater than Patm \newline % Row Count 3 (+ 2) –Zero respiratory pressure = Patm% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pulmonary Ventilation Pressure Changes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Just before each inhalation, the pressure inside the lungs is equal to the atmospheric pressure. \newline % Row Count 2 (+ 2) •760mmHg \newline % Row Count 3 (+ 1) –Air flows from high pressure to low pressure \newline % Row Count 4 (+ 1) –For air to flow into the lungs, the pressure in the alveoli must be less than atmospheric \newline % Row Count 6 (+ 2) –This decrease in alveoli pressure is accomplished by increasing the volume of the lungs through mechanical coupling to a change in thoracic volume% Row Count 9 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diaphragm}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Advanced pregnancy, excessive obesity, and confining abdominal clothing can obstruct diaphragm flattening% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Exhalation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The pressure in the lungs is greater than that of the atmosphere% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pneumothorax}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{- air, or liquid (blood or Interstitial fluid), in the pleural cavity \newline % Row Count 2 (+ 2) –From either wound in parietal or rupture of visceral pleura \newline % Row Count 4 (+ 2) –Intrapleural pressure goes from -4 to 0 thus eliminating the transpulmonary pressure that keeps a lung open \newline % Row Count 7 (+ 3) •lung collapses in on itself% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Surface Tension}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The surface tension of alveolar fluid \newline % Row Count 1 (+ 1) –Found at all air-water interfaces \newline % Row Count 2 (+ 1) •Polar water molecules are more strongly attracted to each other than gas in air \newline % Row Count 4 (+ 2) •This means that when air tries to fill the alveoli, the water on the alveoli surface doesn't want to pull away from itself and produces an inward pull resisting expansion% Row Count 8 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Infant Respiratory Distress Syndrome (IRDS)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Deficiency of surfactant in premature infants \newline % Row Count 1 (+ 1) •Alveoli collapse due to high surface tension \newline % Row Count 2 (+ 1) •Treated by using continuous positive air pressure (CPAP) breathing machines - increases pressure of air going into the lungs - and synthetic surfactant until infant begins producing its own% Row Count 6 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Airway Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Just like blood flow through the circulatory system, air flow depends upon pressure difference and resistance \newline % Row Count 3 (+ 3) •The diameter of airways is regulated by smooth muscle tone which, as previously discussed, is dependent upon parasympathetic and sympathetic interaction% Row Count 7 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Airway Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Obstructive disorders \newline % Row Count 1 (+ 1) –Any pathological condition that narrows, or obstructs, airways \newline % Row Count 3 (+ 2) •Narrowing of airways greatly increases resistance for inhalation and exhalation \newline % Row Count 5 (+ 2) –Increased work of breathing \newline % Row Count 6 (+ 1) •Airways can also become blocked via the collapse of bronchioles, alveoli, or build-up of excess mucous \newline % Row Count 9 (+ 3) •Types of obstructive lung disease include; \newline % Row Count 10 (+ 1) –asthma, bronchitis, chronic obstructive pulmonary disease (COPD), emphysema, cystic fibrosis, etc.% Row Count 13 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Vessel Types}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Arteries – carry blood away from the heart \newline % Row Count 1 (+ 1) •Large elastic arteries (\textgreater{}1 cm); \newline % Row Count 2 (+ 1) medium muscular arteries (0.1 – 10 mm); \newline % Row Count 3 (+ 1) arterioles (\textless{} 0.1 mm)% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Vessel Types}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Systemic veins and venules have the most percentage of the blood found% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The largest arteries are the conducting arteries (elastic arteries) \newline % Row Count 2 (+ 2) –Elastic arteries perform the important function of storing mechanical energy during ventricular systole and then transmitting that energy to keep blood moving after the aortic and pulmonary valves close. \newline % Row Count 7 (+ 5) –Best exemplified by the garden hose-sized aorta.% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Capillaries are the only sites in the entire vasculature where gases, water, nutrients, and wastes are exchanged with the interstitial fluid that bathes tissue. \newline % Row Count 4 (+ 4) • They have no tunics \newline % Row Count 5 (+ 1) •The minimalist nature of capillaries allows them to be freely permeable to many substances (gases, fluids, and small ionic molecules).% Row Count 8 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•An anastomosis is a union of vessels supplying blood to the same body tissue. \newline % Row Count 2 (+ 2) –Should a blood vessel become occluded, a vascular anastomosis provides an alternative route for blood to reach to and return from tissue \newline % Row Count 5 (+ 3) –A great example is the genicular anastomosis \newline % Row Count 6 (+ 1) •Common at joints, in abdominal organs, brain, and heart \newline % Row Count 8 (+ 2) •None in retina, kidneys, spleen% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Flow Through Capillary Beds}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Precapillary sphincters are bands of smooth muscle that regulate blood flow into true capillaries \newline % Row Count 3 (+ 3) –Blood can go into true capillaries or to shunt depending on contractile state of precap sphincters \newline % Row Count 6 (+ 3) •Flow through capillaries regulated by local chemical conditions and vasomotor nerves \newline % Row Count 8 (+ 2) •Slow capillary blood flow allows adequate time for exchange between blood and tissues% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Exchange}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Transcytosis \newline % Row Count 1 (+ 1) –Movement of a small quantity of material through the endothelial cell using a pinocytic vesicle \newline % Row Count 3 (+ 2) •Small membrane enclosed bubble transporting substance within cell \newline % Row Count 5 (+ 2) –Used mainly for large lipid-insoluble (water-soluble) molecules that cannot cross capillary walls by other means \newline % Row Count 8 (+ 3) •Insulin enters the blood stream this way% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Two factors remain relatively constant: \newline % Row Count 1 (+ 1) –Blood viscosity \newline % Row Count 2 (+ 1) –Blood vessel length% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fluid Exchange - Starling Forces}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Reabsorption \newline % Row Count 1 (+ 1) •the movement of fluid from the interstitial fluid back through the walls of the capillary and into the plasma. \newline % Row Count 4 (+ 3) •Two pressures promote reabsorption: \newline % Row Count 5 (+ 1) –Blood colloid osmotic (or oncotic) pressure (BCOP) \newline % Row Count 7 (+ 2) •due to the presence of plasma proteins too large to cross the capillary wall \newline % Row Count 9 (+ 2) –Interstitial fluid hydrostatic pressure (IFHP) \newline % Row Count 10 (+ 1) •The fluid pressure of the interstitial fluid% Row Count 11 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{–normally close to zero but can become a significant factor in states of edema.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood vessel length}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{•Longer vessel = greater resistance encountered} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Relationship Between BF, BP, and Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Blood flow (F) is directly proportional to blood pressure gradient \newline % Row Count 2 (+ 2) –If one decreases, the other decreases \newline % Row Count 3 (+ 1) •Blood flow inversely proportional to resistance (R) \newline % Row Count 5 (+ 2) –If one decreases, the other increases and vice versa \newline % Row Count 7 (+ 2) • (resistance) more important in influencing local blood flow because easily changed by altering a tissue's blood vessel diameter% Row Count 10 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Systemic pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Systemic pressure \newline % Row Count 1 (+ 1) –Highest in aorta \newline % Row Count 2 (+ 1) –Declines throughout the pathway% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Blood Pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Ranges from 35 (capillary entry)to 16 mmHg (capillary exit) \newline % Row Count 2 (+ 2) •Low capillary pressure is desirable \newline % Row Count 3 (+ 1) –High BP would rupture fragile, thin-walled capillaries% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pressure, Flow, And Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•In an effort to meet physiological demands, we can increase blood flow by: \newline % Row Count 2 (+ 2) –Increasing BP gradient \newline % Row Count 3 (+ 1) •Bigger difference between high and low pressure creates greater blood flow \newline % Row Count 5 (+ 2) –Decreasing systemic vascular resistance in the blood vessels \newline % Row Count 7 (+ 2) •Makes it easier for blood to flow from high to low% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Velocity of Blood Flow}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Speed of blood flow \newline % Row Count 1 (+ 1) –Usually in cm/sec \newline % Row Count 2 (+ 1) –Velocity of blood flow is inversely proportional to total cross-sectional area of vessel lumens% Row Count 4 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Regulation of BP and Flow}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Regulation of BP can occur by various methods \newline % Row Count 1 (+ 1) –Neural control \newline % Row Count 2 (+ 1) –Hormonal control \newline % Row Count 3 (+ 1) –Autoregulation% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Baroreceptor Reflex}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Pressure sensitive sensory receptors \newline % Row Count 1 (+ 1) –Found in the aorta, carotid arteries, and other large arteries in the neck and chest \newline % Row Count 3 (+ 2) –Changes in pressure cause changes in the rate of impulses (action potentials) sent to the brain \newline % Row Count 5 (+ 2) •Decrease in pressure = decrease in impulse rate \newline % Row Count 7 (+ 2) •Increase in pressure = increase in impulse rate \newline % Row Count 9 (+ 2) –2 most important baroreceptor reflexes \newline % Row Count 10 (+ 1) •Carotid sinus reflex \newline % Row Count 11 (+ 1) –Helps regulate blood pressure in the brain \newline % Row Count 12 (+ 1) •Aortic reflex \newline % Row Count 13 (+ 1) –Regulates systemic blood pressure% Row Count 14 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{(RAA) system}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The \seqsplit{Renin-angiotensin-aldosterone} (RAA) system is an important endocrine component of autoregulation. \newline % Row Count 3 (+ 3) –Renin is released by kidneys when blood volume falls, Na deficiency is detected, or renal blood flow decreases. \newline % Row Count 6 (+ 3) •It causes the conversion of precursors into substances that lead to the production of the active hormone angiotensin II, which raises BP by vasoconstriction and by stimulating secretion of aldosterone from the adrenal glands.% Row Count 11 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{–ACE inhibitors affect the production of angiotensin II} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atrial Natiuretic Peptide (ANP)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–a diuretic polypeptide hormone released by cells of the cardiac atria in response to high blood volume and atrial pressure. \newline % Row Count 3 (+ 3) –ANP participates in regulation by: \newline % Row Count 4 (+ 1) •Lowering blood pressure (it causes direct vasodilation) \newline % Row Count 6 (+ 2) •Reducing blood volume by increasing sodium excretion in the kidneys (promoting loss of salt in urine formation decreases water reabsorption by the kidney% Row Count 10 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Metabolic Controls}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Effects \newline % Row Count 1 (+ 1) –Relaxation of vascular smooth muscle \newline % Row Count 2 (+ 1) –Release of Nitric Oxide (powerful vasodilator) by endothelial cells \newline % Row Count 4 (+ 2) •Endothelins released from endothelium are potent vasoconstrictors \newline % Row Count 6 (+ 2) •NO and endothelins balanced unless blood flow inadequate, then NO wins \newline % Row Count 8 (+ 2) •Inflammatory chemicals cause vasodilation, also% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Autoregulation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•In an autoregulatory response, important differences exist between the pulmonary and systemic circulations: \newline % Row Count 3 (+ 3) –Systemic blood vessel walls dilate in response to hypoxia (low O2) or acidosis to increase blood flow. \newline % Row Count 6 (+ 3) –The walls of the pulmonary blood vessels constrict to a hypoxic or acidosis stimulus to ensure that most blood flow is diverted to better-ventilated areas of the lung.% Row Count 10 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hypotension}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–defined as any blood pressure too low to allow sufficient blood flow (hypo-perfusion) to meet the body's metabolic demands (to maintain homeostasis) \newline % Row Count 4 (+ 4) –Hypotension leading to hypo-perfusion (pressure and flow are related) of critical organs results in shock% Row Count 7 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Shock and Homeostasis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Most cases of severe shock call for the administration of extra fluids and emergency medications like epinephrine to help restore perfusion (blood flow)to the tissues. \newline % Row Count 4 (+ 4) • If a balance is not restored organs will fail (kidney failure, liver failure, coma) and damage may become permanent.% Row Count 7 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Structurally, The respiratory system is divided into upper and lower divisions,or tracts. \newline % Row Count 2 (+ 2) –Upper respiratory tract \newline % Row Count 3 (+ 1) •consists of the nose, pharynx and associated structures. \newline % Row Count 5 (+ 2) –Lower respiratory tract \newline % Row Count 6 (+ 1) •consists of the larynx, trachea, bronchi and lungs.% Row Count 8 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Much, not all, of the respiratory tract is covered with pseudostratified ciliated columnar epithelium with interspersed goblet cells (secrete mucous) \newline % Row Count 4 (+ 4) •Cilia in the upper respiratory tract move secreted mucous with trapped particles down toward the pharynx. \newline % Row Count 7 (+ 3) •Cilia in the lower respiratory tract move secreted mucous up toward the larynx.% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Nasal Mucosa and Conchae Functions}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•During inhalation, conchae and nasal mucosa \newline % Row Count 1 (+ 1) –Filter, heat, and moisten air \newline % Row Count 2 (+ 1) •During exhalation these structures \newline % Row Count 3 (+ 1) –Reclaim heat and moisture% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Nasopharynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The nasopharynx lies behind the internal nares. \newline % Row Count 2 (+ 2) –It contains the openings of the Eustachian tubes (auditory tubes), which come off of it and travels to the middle ear cavity.% Row Count 5 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Laryngopharynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•As air passes from the laryngopharynx into the larynx, it leaves the upper respiratory tract and enters the lower respiratory tract.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Rima Glottis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•formed by a pair of mucous membrane vocal folds \newline % Row Count 2 (+ 2) –The vocal folds are situated high in the larynx just below where the larynx and the esophagus split off from the pharynx% Row Count 5 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The carina is an internal ridge located at the junction of the two mainstem bronchi \newline % Row Count 2 (+ 2) – a very sensitive area for triggering the cough reflex.% Row Count 4 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Sympathetic stimulation causes airway dilation –\textgreater{} bigger airway = less airflow resistance \newline % Row Count 2 (+ 2) •Parasympathetic stimulation causes airway constriction –\textgreater{} smaller airway = more airflow resistance.% Row Count 5 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiration}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–3 basic steps \newline % Row Count 1 (+ 1) •Pulmonary ventilation \newline % Row Count 2 (+ 1) •External (pulmonary) respiration \newline % Row Count 3 (+ 1) •Internal (tissue) respiration% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Understanding Gases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–The pressure we feel on the surface of the earth is, in essence, the weight of the gasses in our atmosphere \newline % Row Count 3 (+ 3) •At high altitudes, the atmospheric pressure is less; descending to sea level, atmospheric pressure is greater.% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Understanding Gases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{At sea level, the air pressure is:–760 mmHg = 1 atmosphere% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intra-alveolar Pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Pressure in alveoli \newline % Row Count 1 (+ 1) –Changes when breathing \newline % Row Count 2 (+ 1) –Always eventually equalizes with Patm% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diaphragm}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Most important muscle for inspiration \newline % Row Count 1 (+ 1) –Dome-shaped skeletal muscle innervated by the phrenic nerve \newline % Row Count 3 (+ 2) –Contraction of the diaphragm causes it to flatten \newline % Row Count 5 (+ 2) •Lowers (flattens) the dome \newline % Row Count 6 (+ 1) •This increases the vertical volume of the thoracic cavity \newline % Row Count 8 (+ 2) •The change in volume is transferred to the lungs via the intrapleural cavity and the pressure within it% Row Count 11 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{External Intercoastals}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Second most important muscles of inhalation \newline % Row Count 1 (+ 1) –During contraction, these muscles elevate the ribs increasing the anteroposterior and lateral diameters of the chest cavity \newline % Row Count 4 (+ 3) •During inhalation, the ribs move upward and outward like the handle on a bucket% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Passive Exhalation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Normal exhalation during quiet breathing \newline % Row Count 1 (+ 1) •Called passive because no muscular contractions are involved \newline % Row Count 3 (+ 2) •Instead, it results from inward forces; \newline % Row Count 4 (+ 1) –The elastic recoil of the chest wall and lungs \newline % Row Count 5 (+ 1) –the inward pull of the surface tension of the alveolar fluid% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pneumothorax}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–At the same time, the chest wall moves outward because its elastic recoil is no longer opposed by coupling to the inward pulling forces of the lungs \newline % Row Count 4 (+ 4) –Treated by removing excess intrapleural air/fluid with chest tubes; restores negative pressure  lung re-inflates \newline % Row Count 7 (+ 3) –Because the lungs are in separate pleural cavities, one may collapse without interfering with the function of the other% Row Count 10 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Surface Tension}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Causes the alveoli to assume the smallest possible diameter \newline % Row Count 2 (+ 2) •Accounts for 2/3 of lung elastic recoil. \newline % Row Count 3 (+ 1) –If unopposed, this force would cause the alveoli would close with each expiration and make our "Work of Breathing" insupportable% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Compliance of the Lungs}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–How easily something stretches \newline % Row Count 1 (+ 1) •High pulmonary compliance means the lungs and chest wall are easily expanded – easier for inflation \newline % Row Count 4 (+ 3) •Low pulmonary compliance means they resist expansion – harder for inflation \newline % Row Count 6 (+ 2) –Lung compliance dependent upon 2 factors \newline % Row Count 7 (+ 1) •Elasticity \newline % Row Count 8 (+ 1) •Surface tension% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Airway Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–The same as in blood vessel diameter, the larger the diameter of an airway, the less the airway resistance and the greater the flow \newline % Row Count 3 (+ 3) –If the bronchioles dilate even a little, the resistance drops by a power of 4% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Vessel Types}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Capillaries – site of nutrient and gas exchange% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The wall of a blood vessel consists of basic layers or "tunics": \newline % Row Count 2 (+ 2) •Tunica interna (intima) \newline % Row Count 3 (+ 1) •Tunica media \newline % Row Count 4 (+ 1) •Tunica externa% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Medium sized muscular (distributing) arteries \newline % Row Count 1 (+ 1) –Muscular arteries help maintain the proper vascular tone to ensure efficient blood flow to the distal tissue beds by constricting and dilating. \newline % Row Count 4 (+ 3) –Some examples include the brachial artery in the arm and radial artery in the forearm.% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vessel Structure and Function}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The body contains three types of capillaries: \newline % Row Count 1 (+ 1) –Continuous capillaries \newline % Row Count 2 (+ 1) •The most common•Endothelial cells form a continuous tube, interrupted only by small intercellular clefts. \newline % Row Count 5 (+ 3) –Fenestrated capillaries (fenestra = windows) \newline % Row Count 6 (+ 1) •Found in the kidneys, villi of small intestines, and endocrine glands \newline % Row Count 8 (+ 2) •These are much more porous. \newline % Row Count 9 (+ 1) –Sinusoids \newline % Row Count 10 (+ 1) •Form very porous channels through which blood can percolate, e.g., in the liver and spleen.% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Beds: Two Types of Vessels}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Vascular shunt \seqsplit{(metarteriole—thoroughfare} channel) \newline % Row Count 2 (+ 2) –Directly connects terminal arteriole and postcapillary venule% Row Count 4 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Exchange}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Capillary exchange \newline % Row Count 1 (+ 1) –The movement of substances between the blood and interstitial fluid \newline % Row Count 3 (+ 2) –Substances may pass using; \newline % Row Count 4 (+ 1) •Diffusion \newline % Row Count 5 (+ 1) •Transcytosis \newline % Row Count 6 (+ 1) •Bulk Flow (Filtration and Reabsorption)% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Capillary Exchange}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Bulk flow \newline % Row Count 1 (+ 1) –Passive process in which large numbers of ions, molecules, or particles in a fluid move together in the same direction with the fluid \newline % Row Count 4 (+ 3) –Movement is from an area of high pressure to one of low pressure \newline % Row Count 6 (+ 2) –Important for regulation of relative volumes of blood and interstitial fluid \newline % Row Count 8 (+ 2) –hydrostatic and osmotic forces determine bulk flow direction \newline % Row Count 10 (+ 2) –These are called Starling Forces% Row Count 11 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fluid Exchange - Starling Forces}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Blood colloid osmotic pressure \newline % Row Count 1 (+ 1) –These create an osmotic pressure that pulls water into the capillary \newline % Row Count 3 (+ 2) •Interstitial fluid hydrostatic pressure (IFHP) \newline % Row Count 4 (+ 1) –This is the water pressure of the interstitial fluid that pushes fluid into the capillary \newline % Row Count 6 (+ 2) •Blood hydrostatic pressure \newline % Row Count 7 (+ 1) -Basically, the water pressure of the blood pushing fluid out \newline % Row Count 9 (+ 2) •Interstitial fluid osmotic pressure \newline % Row Count 10 (+ 1) -These solutes create an osmotic pressure that pulls water out of the capillary% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Physiology of Circulation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Blood flow \newline % Row Count 1 (+ 1) –Volume (amount) of blood flowing through vessel, organ, or entire circulation in a given period \newline % Row Count 3 (+ 2) •Measured as ml/min \newline % Row Count 4 (+ 1) •As a whole, relatively constant when at rest•Amount varies widely through individual organs, based on needs \newline % Row Count 7 (+ 3) –Factors that affect blood flow \newline % Row Count 8 (+ 1) •Blood pressure \newline % Row Count 9 (+ 1) •Vascular resistance \newline % Row Count 10 (+ 1) •Venous return \newline % Row Count 11 (+ 1) •Velocity of blood flow% Row Count 12 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Force per unit area exerted on the wall of the blood vessel by blood \newline % Row Count 2 (+ 2) •Expressed in mmHg \newline % Row Count 3 (+ 1) –Pressure gradient provides driving force that keeps blood moving from higher to lower pressure areas \newline % Row Count 6 (+ 3) –Determined by CO, blood volume, and vascular resistance% Row Count 8 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood vessel diameter}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Constantly monitored and easily/quickly adjusted \newline % Row Count 2 (+ 2) –Greatest influence on resistance \newline % Row Count 3 (+ 1) •Vasoconstriction \newline % Row Count 4 (+ 1) –Decrease vessel lumen diameter by contraction of smooth muscle \newline % Row Count 6 (+ 2) •Vasodilatation \newline % Row Count 7 (+ 1) –Increase vessel lumen diameter by relaxation of smooth muscle \newline % Row Count 9 (+ 2) –Varies inversely with fourth power of vessel radius% Row Count 11 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Systemic Blood Pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Pumping action of heart generates blood flow \newline % Row Count 1 (+ 1) •Resistance generates blood pressure% Row Count 2 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Arterial Blood Pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Reflects two factors of arteries close to heart \newline % Row Count 2 (+ 2) –Elasticity (compliance or distensibility) \newline % Row Count 3 (+ 1) –Volume of blood forced into them at any time \newline % Row Count 4 (+ 1) –Arterial pressure changes as they accommodate more or less blood from the upstream vessel% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Venous Return}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The volume of blood returning through the veins to the right atrium must be the same amount of blood pumped into the arteries from the left ventricle \newline % Row Count 4 (+ 4) –Besides pressure, venous return is aided by the presence of venous valves, a skeletal muscle pump, and the respiratory pump. \newline % Row Count 7 (+ 3) •The skeletal muscle pump –uses the action of muscles to squeeze blood in 1 direction (due to valves). \newline % Row Count 10 (+ 3) •The respiratory pump \newline % Row Count 11 (+ 1) –uses the negative pressures in the thoracic and abdominal cavities generated during inspiration to pull venous blood towards the heart.% Row Count 14 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Neural Regulation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•CV center also has a role in regulation of blood vessel diameter \newline % Row Count 2 (+ 2) –Vasomotor center \newline % Row Count 3 (+ 1) •Vasoconstrictor center \newline % Row Count 4 (+ 1) •Vasodilator center \newline % Row Count 5 (+ 1) •Sympathetic neurons that innervate blood vessels in the viscera and peripheral areas \newline % Row Count 7 (+ 2) –Vasomotor tone \newline % Row Count 8 (+ 1) –This sets the resting level for systemic vascular resistance% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chemoreceptor Reflex}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Sensory receptors that monitor chemical changes in the blood \newline % Row Count 2 (+ 2) –Located close to the baroreceptors of the carotid sinus and aortic bodies \newline % Row Count 4 (+ 2) –Detect changes in blood CO2, pH, and many detect O2 , also \newline % Row Count 6 (+ 2) •Hypoxia = low O2 availability \newline % Row Count 7 (+ 1) •Acidosis = increase in H+ concentration above normal \newline % Row Count 9 (+ 2) •Hypercapnia = excess CO2% Row Count 10 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Epinephrine and Norepinephrine}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Released from the adrenal medulla as an endocrine response to sympathetic stimulation. \newline % Row Count 2 (+ 2) –They increase cardiac output by increasing heart rate and force of contractions. \newline % Row Count 4 (+ 2) –Also have effects on blood vessels \newline % Row Count 5 (+ 1) •Vasoconstrictory (harder for to blood flow) in some places, vasodilatory (easier for blood to flow) in others% Row Count 8 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Autoregulation of BP}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–The ability of a tissue to automatically adjust its blood flow to match its metabolic demand \newline % Row Count 2 (+ 2) •Very important in heart, brain, and skeletal muscle \newline % Row Count 4 (+ 2) •Blood distribution to various parts of the brain changes \newline % Row Count 6 (+ 2) –Controlled intrinsically by modifying the diameter of local arterioles feeding capillaries \newline % Row Count 8 (+ 2) –2 general types of stimuli cause autoregulatory changes in blood flow•Metabolic controls \newline % Row Count 10 (+ 2) •Myogenic controls \newline % Row Count 11 (+ 1) •Both determine the final autoregulatory response% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Myogenic Controls}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Myogenic responses keep local tissue perfusion constant despite most fluctuations in systemic pressure \newline % Row Count 3 (+ 3) •Vascular smooth muscle responds to stretch \newline % Row Count 4 (+ 1) –Passive stretch (increased intravascular pressure) promotes increased tone and vasoconstriction% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Long-term Autoregulation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Occurs when short-term autoregulation cannot meet tissue nutrient requirements \newline % Row Count 2 (+ 2) •Angiogenesis \newline % Row Count 3 (+ 1) –Growth of new blood vessels \newline % Row Count 4 (+ 1) –Number of vessels to nutrient deficient region increases and existing vessels enlarge to supply more blood flow in an effort to restore normal chemical environment \newline % Row Count 8 (+ 4) –Common in heart when coronary vessel occluded, or throughout body in people in high-altitude areas% Row Count 11 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Shock}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Failure of the cardiovascular system to deliver enough oxygen and nutrients to meet cellular metabolic demands \newline % Row Count 3 (+ 3) •The 4 basic types of shock are: \newline % Row Count 4 (+ 1) –Hypovolemic shock \newline % Row Count 5 (+ 1) •due to decreased blood volume \newline % Row Count 6 (+ 1) –Cardiogenic shock \newline % Row Count 7 (+ 1) •due to poor heart function \newline % Row Count 8 (+ 1) –Obstructive shock \newline % Row Count 9 (+ 1) •due to obstruction of blood flow - embolism \newline % Row Count 10 (+ 1) –Vascular shock \newline % Row Count 11 (+ 1) •due to excess vasodilation - as seen in cases of a massive allergy% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Functionally, the respiratory system is divided into the conducting zone and the respiratory zone. \newline % Row Count 3 (+ 3) –Conducting zone \newline % Row Count 4 (+ 1) •Involved with bringing air to the site of external respiration and consists of the nose, pharynx, larynx, trachea, bronchi, bronchioles and terminal bronchioles. \newline % Row Count 8 (+ 4) –Respiratory zone \newline % Row Count 9 (+ 1) •The main site of gas exchange and consists of the respiratory bronchioles, alveolar ducts, alveolar sacs, and alveoli.% Row Count 12 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Respiratory System}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The external nose is visible on the face. \newline % Row Count 1 (+ 1) •The internal nose is a large cavity beyond the nasal vestibule. \newline % Row Count 3 (+ 2) –The internal nasal cavity is divided by nasal septum into right and left nares.% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pharynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–A hollow tube that starts posterior to the internal nares and descends to the opening of the larynx in the neck. \newline % Row Count 3 (+ 3) –It is formed by a complex arrangement of skeletal muscles that assist in swallowing \newline % Row Count 5 (+ 2) –It functions as: \newline % Row Count 6 (+ 1) •a passageway for air and food \newline % Row Count 7 (+ 1) •a resonating chamber for sound \newline % Row Count 8 (+ 1) •a housing for the tonsils (lymphatic organs)% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oropharynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The oropharynx lies behind the mouth and participates in both respiratory and digestive functions.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Larynx}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–composed of 9 pieces of cartilage, forms a short passageway connecting the laryngopharynx with the trachea (the "windpipe"). \newline % Row Count 3 (+ 3) –The thyroid cartilage (the large "Adam's apple") and the one below it (cricoid cartilage) are landmarks for making a temporary emergency airway (called a cricothyrotomy).% Row Count 7 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Trachea}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–a semi-rigid pipe made of semi-circular cartilaginous rings (hyaline cartilage), and located anterior to the esophagus. \newline % Row Count 3 (+ 3) –It is about 12 cm long and extends from the inferior portion of the larynx into the mediastinum where it divides into right and left primary (1o, "mainstem") bronchi.% Row Count 7 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bronchi}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•The 1st bronchi divide to form 2nd (secondary) and 3rd (tertiary) bronchi which respectively supply the lobes and segments of each lung. \newline % Row Count 3 (+ 3) –3rd bronchi divide into bronchioles which in turn branch through about 22 more divisions. •The smallest are the terminal bronchioles.% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Conducting Airways}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•All the branches from the trachea to the terminal bronchioles are conducting airways% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pulmonary Ventilation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–the movement of air between the atmosphere and the alveoli of the lungs \newline % Row Count 2 (+ 2) –It consists of inhalation and exhalation.% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Understanding gases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•A barometer is an instrument that measures atmospheric pressure. \newline % Row Count 2 (+ 2) –Baro = pressure or weight \newline % Row Count 3 (+ 1) –Meter = measure \newline % Row Count 4 (+ 1) –Air pressure varies greatly depending on the altitude and the temperature.% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Understanding Gases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Boyle's law states that volume and pressure are inversely related.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intrapleural pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Pressure in the pleural cavity \newline % Row Count 1 (+ 1) •Pleural cavity is sealed space between the surface of the lungs and internal chest wall \newline % Row Count 3 (+ 2) –Changes when breathing \newline % Row Count 4 (+ 1) –This should always be a negative pressure (\textless{}Patm and \textless{}Ppul) in order to prevent lung collapse \newline % Row Count 6 (+ 2) –Plural fluid helps limit friction between lungs and thoracic wall, but the fluid amount must be kept to a minimum \newline % Row Count 9 (+ 3) •Excess is pumped out by lymphatics•If accumulates  positive Pip pressure  lung collapse% Row Count 11 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diaphragm}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•This causes the lungs to expand thus increasing their volume and decreasing the pressure at the alveoli below that of atmospheric \newline % Row Count 3 (+ 3) •Air rushes in from the higher external atmospheric pressure to the lower internal alveoli pressure causing the lungs to fill in an effort to equalize the two pressures \newline % Row Count 7 (+ 4) •This is responsible for about 75\% of air that enters the lungs during resting (quiet) breathing% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Inhalation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Accessory muscles of inhalation \newline % Row Count 1 (+ 1) –Involved in active inhalation \newline % Row Count 2 (+ 1) •These assist in increasing thoracic volume during exercise or deep, forceful inhalations \newline % Row Count 4 (+ 2) –Sternocleidomastoid \newline % Row Count 5 (+ 1) •Elevates the sternum \newline % Row Count 6 (+ 1) –Scaline \newline % Row Count 7 (+ 1) •Elevates the first two ribs \newline % Row Count 8 (+ 1) –Pectoralis minor \newline % Row Count 9 (+ 1) •Elevates ribs 3-5% Row Count 10 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Active Exhalation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Forceful exhalation \newline % Row Count 1 (+ 1) •Yelling, exercise, or playing a wind instrument \newline % Row Count 3 (+ 2) –Requires muscles of exhalation \newline % Row Count 4 (+ 1) •Abdominals \newline % Row Count 5 (+ 1) –Moves the inferior ribs downward and compresses the abdominal viscera» Forces the diaphragm superiorly \newline % Row Count 8 (+ 3) •Internal intercostals \newline % Row Count 9 (+ 1) –Pulls the ribs inferiorly (downward)% Row Count 10 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Airflow and Work of Breathing}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{3 other factors also affect the ease with which we ventilate: \newline % Row Count 2 (+ 2) –The surface tension of alveolar fluid \newline % Row Count 3 (+ 1) –Compliance of the lungs \newline % Row Count 4 (+ 1) –Airway resistance% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Surfactant}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–A mixture of phospholipids and lipoproteins present in the alveolar fluid \newline % Row Count 2 (+ 2) –Reduces the alveolar fluid surface tension below the surface tension of pure water by blocking some water-to-water interactions \newline % Row Count 5 (+ 3) •Allows for easier inflation of the alveoli and helps prevent alveolar collapse during exhalation% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Compliance of Lungs}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{–Restrictive disorders restrict lung expansion \newline % Row Count 1 (+ 1) •Pulmonary fibrosis \newline % Row Count 2 (+ 1) –Scar tissue not very elastic \newline % Row Count 3 (+ 1) •Deficiency in surfactant•Pulmonary edema (excess fluid in the lungs) \newline % Row Count 5 (+ 2) –Decreases lung compliance \newline % Row Count 6 (+ 1) •Impedance to expansion \newline % Row Count 7 (+ 1) –E.g. Ventilatory muscle paralysis, broken ribs, obesity% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Airway Resistance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Pressure's role in airway resistance \newline % Row Count 1 (+ 1) –As the lungs expand during inhalation, the bronchioles enlarge because they are expanding outward in all directions \newline % Row Count 4 (+ 3) •This decreases resistance to flow in to the lungs \newline % Row Count 6 (+ 2) –As the lungs expand during inhalation, the bronchioles enlarge because they are expanding outward in all directions \newline % Row Count 9 (+ 3) •This increases resistance to flow out of the lungs \newline % Row Count 11 (+ 2) •Any condition that narrows, or obstructs, the airways increases resistance% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}