\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{jjovann} \pdfinfo{ /Title (exam-1-review.pdf) /Creator (Cheatography) /Author (jjovann) /Subject (Exam 1 Review Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{000000} \definecolor{LightBackground}{HTML}{F7F7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Exam 1 Review Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{jjovann} via \textcolor{DarkBackground}{\uline{cheatography.com/67730/cs/18627/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}jjovann \\ \uline{cheatography.com/jjovann} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 1st February, 2019.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens and Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are the effects of antibodies binding to antigens?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When antibodies attach to antigens of foreign cells, they cause the foreign cells to clump together and eventually undergo immune system mediated destruction} \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What happens during development and the name of each stage} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Developing RBCs lose their nucleus and many other organelles as they mature} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When a maturing RBC loses it's nucleus, it becomes a reticulocyte} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The mature form is highly specialized for oxygen transport} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Circulatory System}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Where is the heart located in the thoracic cavity?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The heart is located in the mediastinum, which extends from the sternum anteriorly to the vertebral column posteriorly, and lies medially between the two lungs and the pleural membranes that cover them.} \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is hemoglobin and what does it do?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Hemoglobin is a protein molecule adapted to carry O2} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is special about antibody production in negative individuals?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Anti-Rh antibodies not spontaneously formed in Rh– individuals} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Anti-Rh antibodies form if Rh– individual receives Rh+ blood, or Rh– mom carrying Rh+ fetus} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the Rh antigen?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}is an inherited protein found on the surface of red blood cells} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How are old RBCs destroyed} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Ruptured RBCs are removed from circulation and destroyed by fixed phagocytotic macrophages in the spleen and liver} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Which naturally produce what antibodies?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type A- Anti B antibody} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type B- Anti A antibody} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type AB- Neither antibodies} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type O- Both A and B antibodies} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Abnormalities of Erythropoiesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List some causes} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}low iron intake, hemolysis, autoimmune disease, blood loss, or lack of production in the bone marrow} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The CV System}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What does the CV system consist of?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}consists of three interrelated components: Blood Heart Blood vessels} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Anemias}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is sickle-cell disease and how are RBC affected?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}An autosomal recessive disorder} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A genetic defect in the primary DNA sequence leads to production of a faulty Hgb β chain, and RBCs that take on a rigid, sickle-shape} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens and Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are antibodies?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Proteins produced by B-cells (immune cells) that are used by the immune system for identification and destruction of foreign objects} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formed Elements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are WBCs and list characteristics discussed in PPT} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}leukocytes} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Have nuclei and a full complement of other organelles} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}do not contain the protein Hgb} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Shorter life-span compared to RBCs} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}divided into two groups depending on whether they contain conspicuous chemical-filled cytoplasmic granules (when stained) Granulocytes Agranulocytes} \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens \& Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are antigens?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}surface identification markers to the immune system} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Leukocytes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why is it important for WBC function} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}This allows them to pinpoint the area of \seqsplit{damage/inflammation/infection} and gather in large numbers to remove debris and fight infection} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Transfusion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is a blood transfusion?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The process of transferring blood or blood products from one person to another} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Granulocytes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List the granulocytes, the role of each, and their relative abundance} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Neutrophil} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The most numerous WBC in normal blood (50-70\% of circulating white blood cells)} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}PMNs are granulocytes with a pinkish cytoplasm} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}one of the two major phagocytes in the body} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}their principal role is to fight bacterial infections} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Use a variety of chemicals destroy pathogens} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Eosinophils} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Characterized by their large red granules} \tn % Row Count 12 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Involved in mediation of inflammation and phagocytosis of antigen-antibody complexes} \tn % Row Count 14 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}They are much less numerous than neutrophils (2-4\% of circulating WBCs)} \tn % Row Count 16 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}they have also been associated with the development of allergies} \tn % Row Count 18 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Basophils} \tn % Row Count 19 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Contain large, dark blue, histamine containing granules} \tn % Row Count 21 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Normally, they are the lowest number of circulating WBCs (only 0-1\%),} \tn % Row Count 23 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Play an important role in the escalation of inflammatory responses} \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hemostasis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are the three steps and describe the process of each} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Vascular spasm} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Vasoconstriction ( vascular smooth muscle squeezing) of damaged blood vessel} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Formation of a platelet plug} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Positive feedback cycle} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Damaged endothelium exposes the blood vessel collagen fibers (important structural proteins) to blood flowing through it} \tn % Row Count 10 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Platelets stick to exposed collagen fibers via help of the plasma protein Von Willebrand factor} \tn % Row Count 13 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Platelets swell, become spiked and sticky, and release particular chemical messengers:} \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The aforementioned chemical messengers cause more platelets in the area affected to swell, become spiked and sticky, stick to the exposed collagen and release more chemical messengers, which cause the process to continue and amplify} \tn % Row Count 20 (+ 5) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Usually takes about a minute for the platelets to form a plug large enough to affect blood loss.} \tn % Row Count 23 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Coagulation} \tn % Row Count 24 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Reinforces platelet plug with mesh-like arrangement of fibrin threads} \tn % Row Count 26 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Blood transformed from liquid to gel-like substance (clot) helping to reinforce and seal larger breaks} \tn % Row Count 29 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Muscle Tissue: Electrophysiology}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List basic electrophys differences with skeletal muscle} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Action potential and contractile phase last much longer in contractile cardiac myocytes} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}extends absolute refractory period and allows time for proper contraction necessary for pressure build up needed for ejection of blood from heart chamber} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Return to repolarization results from inactivation of Ca2+ channels during the open period of voltage-gated K+ channels} \tn % Row Count 11 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Ca2+ pumped back into SR and extracellular fluid} \tn % Row Count 13 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Long absolute refractory period (250 ms)} \tn % Row Count 14 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Another Action potential and contraction cannot begin until relaxation is well underway. For this reason, tetanus (sustained contraction) cannot occur in cardiac muscle This allows for sufficient time between contractions for the chambers to fill with blood – cannot properly fill if contracting} \tn % Row Count 21 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Conduction: Sequence of Excitation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the SA node and why is it the pacemaker?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Pacemaker of heart in right atrial wall} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Depolarizes faster than rest of non-contractile myocardium} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the AV node and why is it important?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}In inferior interatrial septum (separation line between atria)} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Allows atrial contraction to mostly complete prior to conducting the AP that will be responsible for ventricular contraction} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the AV bunde and what is its job?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}In superior interventricular septum (separation line between ventricles)} \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Only electrical connection between atria and ventricles} \tn % Row Count 15 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Basics of right and left bundle branches} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Two pathways in interventricular septum} \tn % Row Count 17 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Carry impulses toward apex of heart} \tn % Row Count 18 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the Subendocardial network and why is it important?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Complete pathway through interventricular septum into apex and ventricular walls} \tn % Row Count 22 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}More elaborate on left side of heart - more muscle mass} \tn % Row Count 24 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}AV bundle and subendocardial conducting network depolarize 30X/minute in absence of AV node input} \tn % Row Count 27 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What type of tissue is blood?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}connective tissue} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Composed of: Plasma (\textasciitilde{}55\%) Formed elements (\textasciitilde{}45\%)} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Components Of Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Components of blood} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Plasma (\textasciitilde{}55\% of whole blood by volume)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What is it mostly? (Plasma)} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}91.5\% water and 8.5\% solutes} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are the different constituents?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Water and Solutes} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What are plasma proteins and where are most made?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Specific proteins confined to blood are called plasma proteins} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Which are found in the greatest amount (by weight, by number)?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Albumins, Globulins, Fibrinogen} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Heart Location}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How is it oriented?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The heart is located in the middle mediastinum.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Base} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The base of the heart is tipped up medially and posteriorly} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Apex} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the apex projects inferiorly and laterally.} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Autorhythmicity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How are they connected to each other and to the contractile cardiac myocytes?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The conducting system is in contact with the contractile cardiac myocytes via gap junctions} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What are those connections used for?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Once a group of autorhythmic cells reaches threshold and start an action potential (AP), all of the cells in that area of the heart also depolarize by spread of ions through gap junctions.} \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formed Elements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is hemopoiesis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Process by which the formed elements of blood develop} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Where does it take place in humans?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}From late fetal development to death} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What 2 main types of stem cells do the pluripotent cells give rise to?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Myeliod and lymphoid stem cells} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Why are the lymphoid stem cells named so?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}their beginning development in the red bone marrow and ending in the lymphoid tissue} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acute Lymphoblastic Leukimia}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{From what line of blood cells does ALL develop?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}White Blood Cells} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chambers Of The Heart}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Right heart and pump} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}consists of the right atrium and right ventricle Takes in venous blood from the body and pumps it to the lungs for oxygenation.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Left heart and pump} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}consists of the left atrium and left ventricle Takes in freshly oxygenated pulmonary blood and pumps it systemically (meaning to the body).} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Top pump} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A weak pump consisting of the right and left atria. The atria receive venous blood and top-off the ventricles by giving an "atrial kick" (atrial contraction) before the ventricles contract.} \tn % Row Count 15 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Bottom pump} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A strong pump consisting of the right and left ventricles – pumps out to arteries It's the main pump for the pulmonary and systemic circuits.} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chambers Of The Heart}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List the 4 chambers of the heart} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Right Atrium Right Ventricle Left Atrium Left Ventricle} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Regulation of Hemopoiesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the importance of their discovery and artificial synthesis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Laboratory made hemopoietic growth factors have shown great promise in helping reduce some of the side effects of chemotherapy as well as treatment of particular disieases and genetic defficiencies} \tn % Row Count 7 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intravascular Clotting}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is intravascular clotting and the define the terms in each} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Formation of a clot in an unbroken blood vessel (usually a vein) is called thrombosis.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The clot itself is called a thrombus} \tn % Row Count 5 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Embolism: embolus obstructing a vessel} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intavascular Clotting}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why is this dangerous and list some risk factors} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Blocks blood supply to region and can result in tissue death} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Risk factors – atherosclerosis, infection, inflammation, slowly flowing blood, or blood stasis from immobility} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens and Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Can a single antibody bind to any antigen? Why?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}No, Each antibody type is very specific for a particular antigen} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Anticoagulant Drugs}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Identify the anticoagulant drugs in the PPT and their respective mechanisms} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}\seqsplit{Aspirin-Antiprostaglandin} that inhibits thromboxane A2 synthesis} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Heparin-Helps antithrombin block thrombin formation and activity} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Warfarin-Interferes with action of vitamin K in clot formation/Works slower than heparin} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Dabigatran-Directly inhibits thrombin} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Clot Retraction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is clot retraction and how does it occur?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}is the consolidation of the fibrin reinforced clot. As the clot retracts, it pulls the edges of the damaged vessel closer together, decreasing the risk of further damage} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Electrocardiogram}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is an ECG} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}An ECG is a recording of the electrical changes on the surface of the body resulting from the depolarization and repolarization of the myocardium.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Why is it important clinically?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}An ECG recording can help us determine normal from abnormal cardiac activity:} \tn % Row Count 8 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What does each wave and interval represent} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}P wave - atrial depolarization} \tn % Row Count 10 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}P-Q interval - time it takes for the atrial contraction to top-off the ventricles} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}QRS wave - ventricular depolarization and atrial repolarization} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}S-T segment - time it takes to empty the ventricles before they repolarize (the T wave} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is hematology and how does blood contribute to homeostasis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The study of blood, blood forming tissues, and the disorders associated with them} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Blood contributes to homeostasis by: Transporting respiratory gasses, nutrients, metabolites, and hormones to and from your body's cells. Helping to regulate body pH and temperature. Providing protection through its clotting mechanisms and immune defenses} \tn % Row Count 10 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Transfusion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How is whole donated blood processed (separated)?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Almost all donated blood in the U.S. is separated into its various components to make better use of it} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{WBC Indies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What does it mean if a type of WBC is present in excess amounts?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}In this peripheral blood smear a patient with lymphocytic leukemia has a WBC \textgreater{}150,000 and 90\% of the WBCs are cancerous lymphocytes!} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential Initiation by Pacemaker Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Describe their action potential steps} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Pacemaker potential End of repolarization closes voltage-gated K+ channels Special (funny current) channels open and let positive ions enter the cell positive ion flow in moves membrane voltage in a positive direction} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Depolarization Once the threshold value is met (AP membrane voltage) Fast voltage-gated Ca2+ channels open Ca2+ influx rising phase of action potential} \tn % Row Count 10 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Repolarization-Slow voltage-gated K+ channels open outflow of K+ greater than Ca2+ inflow as the voltage-gated Ca2+ channels close} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens and Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are cellular antigens typically made of?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Proteins} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Glycolipids} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Glycoproteins} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Proteolipids} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Conduction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Two important roles of autorhythmic fibers} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Formation of the conduction system of the heart} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Act as pacemakers within that system.} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Know the different blood groups} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Types A, B, AB, and O} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Muscle Tissue: Electrophysiology}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List electrophys similarities with skeletal muscle} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Contractile cardiac muscle fibers have a stable resting membrane potential – stay at stable negative charge until signaled} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}In contractile cardiac muscle fibers, depolarization opens fast voltage-gated Na+ channels in the cell membrane} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Positive sodium rushes in and causes brief reversal of membrane potential – goes from negative to positive} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What is responsible for depolarization phase?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Depolarization is due to Na+ influx through fast voltage-gated Na+ channels} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What change in cell functioning does depolarization produce?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Depolarization wave results in opening of slow Ca2+ channels in T-tubule membrane (around peak and early repolarization) - influx of calcium-SR releases Ca2+} \tn % Row Count 19 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Which can donate to and receive from who and why?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Blood typing for ABO status is done using single drops of blood mixed with different antisera} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Agglutination with an antisera indicates the presence of that antigen on the RBC} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Muscle Tissue}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are they heavily reliant on?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}High dependence on aerobic respiration (needs O2) for ATP production} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What can they use to make more fuel?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Can even use lactic acid from skeletal muscles to make more ATP} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How are they connected to, and communicate with, each other} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cardiac myocytes connect to, and communicate with, adjacent neighboring cells through gap junctions in intercalated discs.} \tn % Row Count 11 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}APs spread to other cardiac myocytes by ion travel through gap junctions} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transfusion Reaction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the danger in someone receiving mismatched blood?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Diminished oxygen-carrying capacity} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Diminished blood flow beyond blocked vessels} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Hemoglobin in kidney tubules-renal failure} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Heart Location}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the function of the pericardium?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The pericardium is the membrane that surrounds and protects the heart and retains its position in the mediastinum} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{List the layers and properties of each?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The fibrous pericardium is a very dense and non-flexible connective tissue that helps protect and anchor the heart.} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The inner serous pericardium is subdivided into;} \tn % Row Count 10 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}parietal layer adheres to the outermost fibrous layer} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}visceral layer also viewed as the outer surface of the heart wall} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A thin pericardial fluid lubricates the space between the visceral and parietal pericardium (pericardial cavity).} \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Agranulocytes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List the agranulocytes , the role of each, and their relative abundance} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Monocytes} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Arise from the same immediate precursor cell as the 3 granulocytes (the myeloid stem cell), but no granules} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Along with neutrophils, monocytes are the other major group of phagocytic cells.} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Constitute only 3-8\% of the circulating WBCs} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Crucial in the defense against viruses, certain bacterial parasites, fungi, and chronic infections} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Differentiate into Macrophages in tissues} \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Some become "fixed" (localized to a particular tissue) and others become "wandering" (roamers that congregate at sites of infection or inflammation)} \tn % Row Count 17 (+ 4) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Lymphocytes} \tn % Row Count 18 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Do not have granules or phagocytize} \tn % Row Count 19 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The major soldiers in immune system battles} \tn % Row Count 20 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Approximately 20-30\% of circulating white cells} \tn % Row Count 21 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Lymphocytes are the cornerstone of the specific immune response} \tn % Row Count 23 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Continuously move between blood and lymphatic tissue} \tn % Row Count 25 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Develop into;T-cells B-cells Natural killer cells} \tn % Row Count 27 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Anemias}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How may this affect the health of those with the full phenotype of the disease?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Sickling decreases the cells' flexibility and results in a variety of complications} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acute Lymphoblastic Leukimia}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What characterizes it?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Characterized by the overproduction and accumulation of cancerous, immature white blood cells, known as lymphoblasts.} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formed Elements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How are they classified?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Have nuclei and a full complement of other organelles} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}do not contain the protein Hgb} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Shorter life-span compared to RBCs} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}divided into two groups depending on whether they contain conspicuous chemical-filled cytoplasmic granules (when stained)} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formed Elements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is hematocrit?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the \% of RBCs per unit blood volume} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acute Lymphoblastic Leukimia}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What characterizes it?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Characterized by the overproduction and accumulation of cancerous, immature white blood cells, known as lymphoblasts.} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Abnormalities of Erythropoiesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is iron deficiency anemia and why is it important for women to know of its cause?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Too few healthy red blood cells due to too little iron in the body} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}20\% of all women of childbearing age have some form of iron deficiency anemia} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acute Myeloid Leukimia}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{From what line of blood cells does AML develop?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cancer of the myeloid line of blood cells} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What do they specialize in?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The mature form is highly specialized for oxygen transport} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Components Of Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List the three formed elements of blood} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Red Blood Cells (RBCs) White Blood Cells (WBCs) Platelets} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Abnormalities of Erythropoiesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is polycythemia and what can cause it?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}a condition of excess number of RBCs per unit volume} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Hypoxia} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Characteristics of Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is ECF?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}extracellular fluid} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Plasma volume constitutes roughly 25\% of extracellular fluid} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Other 75\% of ECF is interstitial fluid} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How is it able to do its job (what element is necessary)?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A Hgb molecule consists of 4 large globin proteins (2 alpha and 2 beta chains), each embedding an iron-containing heme center} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The iron binds oxygen} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Each hemoglobin can bind to 4 oxygen molecules.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formed Elements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why is the bi-concave shape important?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Allows for high surface area to cell volume, which is optimal for gas exchange Also allows RBCs to deform without rupturing Very important in capillary circulation} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Muscle Tissue}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are the two types of cardiac muscle cells?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Contractile fibers and non-contractile fibers} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Properties} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Excitable tissue-changes in electrical states that affect cellular activity} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Like skeletal muscle, cardiac muscle is striated} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Contractile units organized much the same as skeletal} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Unlike skeletal muscle, cardiac muscle fibers; Are shorter Can branch Have only one (usually centrally located) nucleus.} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Have many mitochondria} \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Readily switches fuel source for aerobic respiration} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Circulatory System}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is the job of the heart and how does it contribute to homeostasis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The heart and blood vessels transport water, gases (O2, CO2, N2), proteins, hormones, and waste products throughout the body.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Involved in the regulation of temperature and blood pH.} \tn % Row Count 7 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Also helps facilitate the functions of the immune system.} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What characteristics about the RBC contribute to this specialization?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Due to the lack of most organelles, the majority of their internal space is available for oxygen transport} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Layers of The Heart Wall}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are the three layer of the heart wall?What composes each?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The epicardium-the thin, transparent outer layer of the heart wall also called the visceral layer of the serous pericardium.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The myocardium-the thick middle layer composed of cardiac muscle} \tn % Row Count 7 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The endocardium-a simple squamous epithelial layer (known in the circulatory system as "endothelium").} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Regulation of Hemopoiesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List and define the hemopoietic growth factors} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Erythropoietin (EPO) – increases the \# of RBC precursers (formed in kidneys)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Thrombopoetin (TPO) – stimulates formation of platelets from megakaryocytes (formed in liver)} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cytokines – small glycoproteins that regulate the development of different blood cells( formed by red bone marrow cells, leukocytes,} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Characteristics of Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{List the characteristics of blood} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Blood is more dense and viscous (thicker) than water.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Has a temperature of \textasciitilde{}38 deg C (1 deg C higher than oral or rectal body temp)} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Slightly alkaline} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}pH ranging from 7.35 – 7.45} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Changes from dark to bright red depending on oxygen content} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Average blood volume in: Males = 5 to 6 liters (\textasciitilde{}1.5 gal) Females = 4 to 5 liters (\textasciitilde{}1.2 gal) Difference mainly due to body size} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acute Myeloid Leukimia}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What characterizes it?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Autorhythmicity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is autorhythmicity?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The self initiated rhythmical electrical activity displayed by the heart} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What does that mean for the heart?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Because heart muscle is autorhythmic, it does not rely on the central nervous system to stimulate a heartbeat} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How abundant are autorhythmic fibers?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Approximately 1\% of cardiac cells are autorhythmic fibers} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Autorhythmicity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What do they not do?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Do not function in contraction} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What is special about them?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}have specialized features that are essential for normal heart excitation} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What do they do for the heart?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Constitute a network called the conducting system} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The conducting system is in contact with the contractile cardiac myocytes via gap junctions} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}These cells are what initiate the heartbeat and help spread the impulse (action potential) rapidly through the heart} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Components of Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Which is most abundant in blood?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Red Blood Cells} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Characteristics of Blood}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is ISF and how does it relate to blood?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Interstitial fluid (ISF)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Fluid that bathes body tissues} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Constantly renewed by blood} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cardiac Conduction: Sequence of Excitation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Describe the pathway of action potential conduction through the heart} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Sinoatrial node  Atrioventricular node  Atrioventricular bundle  Right and left bundle branches  Subendocardial conducting network (Purkinje fibers} \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{WBC Indices}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is a WBC differential and why is it important?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}To enhance the diagnostic value of a WBC count, the percentages of each of the 5 types of WBCs is determined by using a machine to do a statistical analysis of the blood sample} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Shifts in the normal percentages of circulating WBCs will often point towards a bacterial infection (elevated percentage of neutrophils) or a viral infection (elevated percentage of lymphocytes} \tn % Row Count 11 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Transfusion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is serum?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}serum is just plasma without the clotting factors} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formed Elements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are platelets, their role, and life span?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Derived from megakaryocytes that splinter into 2000-3000 fragments} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Short life span (5 – 9 days)} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Form a platelet plug in damaged vessels and release chemicals that promote clotting} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hemostasis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is hemostasis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The sequence of responses that halt bleeding} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Describe the importance of this response?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When blood vessels are damaged or ruptured, the hemostatic response must be quick, localized to the region of damage, and carefully controlled in order to be effective} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What does it require?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Requires various clotting factors, and substances released by platelets and injured tissues Three mechanisms reduce blood loss (Vascular spasm Formation of a platelet plug Blood clotting (coagulation)} \tn % Row Count 13 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{WBC Indies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is leukocytosis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Increase in WBC count above 11,000 cells/microliter} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What is Leukopenia?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}WBC count less than 5,000 cells/microliter} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{WBC Indices}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why are WBC indices clinically important?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Shifts in the normal percentages of circulating WBCs will often point towards a bacterial infection (elevated percentage of neutrophils) or a viral infection (elevated percentage of lymphocytes} \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fibrinolysis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is fibrinolysis, the fibrinolytic system, and why is it important?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}a clot has a tendency to enlarge quickly, creating the potential for impairment of blood flow through undamaged vessels} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fibrinolysis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What enzymes are important in this system and how do they function (what do they affect)?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Both body tissues and blood contain substances that can transform plasminogen (inactive form made by liver) to plasmin, (the enzyme that actively dissolves clots)} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Antithrombin, blocks the activity of thrombin, can be activated to help slow clot formation} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{WBC Indices}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Compare number of circulating WBCs to RBCs} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}WBCs are far less numerous than RBCs in the blood} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Normal concentration \textasciitilde{}5,000-10,000 cells/microliter} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Leukocyte Movement}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is emigration?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The process by which WBCs leave the blood stream} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Granulocytes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Leukocytes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is phagocytosis and which WBCs are the main active phagocytes?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the process of engulphing a substance or another cell} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Monocytes and neutrophills are the main active phagocytes in the body} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What does positive and negative designate?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Those with the Rh antigen are said to be Rh+ (positive)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Those without the Rh antigen are Rh- (negative)} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Leukocytes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is positive chemotaxis?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Chemicals released by microbes, other WBCs, and inflamed tissues can attract particular WBCs, a phenomenon} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens and Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Define agglutinogen and how the term relates to antigens} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Promoters of clumping} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Thus antigens are also called agglutinogens because they can trigger a clumping response from the immune system} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Anemias}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are they at increased risk for?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Increased risk of stroke} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antigens and Antibodies}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What are antibodies also called?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Antibodies are called agglutinins} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Anemias}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is hemorrhagic anemia?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}precipitous blood loss, and results in an equal decrease in Hct, Hgb content, and RBC count} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Which have what antigens?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type A- A antigen} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type B- B antigen} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type AB- A and B antigens} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Type O- Neither A or B antigens} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Abnormalities of Erythropoiesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is anemia?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}lowered oxygen carrying capacity of the blood} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Which can donate to and receive from who and why?} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Red Blood Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why do RBC's have a limited life span?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}mature RBCs lack a nucleus or any protein making instructions} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}This means they cannot synthesize new components to repair damaged ones} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Human Blood Groups}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is it named after?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Named due to its discovery in the blood of the Rhesus monkey} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}