\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{jjovann} \pdfinfo{ /Title (chapter-9-2.pdf) /Creator (Cheatography) /Author (jjovann) /Subject (Chapter 9.2 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{000000} \definecolor{LightBackground}{HTML}{F7F7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chapter 9.2 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{jjovann} via \textcolor{DarkBackground}{\uline{cheatography.com/67730/cs/17545/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}jjovann \\ \uline{cheatography.com/jjovann} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 22nd October, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intro to Skeletal Muscle Physiology}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•In order for contraction of skeletal muscle to occur, electrical signals (action potentials) from motor neurons must be transformed into chemical signals (neurotransmitters) \newline % Row Count 4 (+ 4) –Takes place at the neuromuscular junction \newline % Row Count 5 (+ 1) •These chemical signals then stimulate electrical signals in sarcolemma of the muscle fiber - if the chemical stimulation is strong enough. \newline % Row Count 8 (+ 3) •The electrical signal in the muscle fiber (action potential) then activate a series of events that lead to the shortening of the skeletal muscle fiber% Row Count 12 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intro to Skeletal Muscle Physiology}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Predominant theory of skeletal muscle contraction–Well supported by research \newline % Row Count 2 (+ 2) •Sliding filament model of \seqsplit{contraction–Interactions} between the thin and thick filaments of the sarcomere produce the contraction (shortening) of a skeletal muscle cell \newline % Row Count 6 (+ 4) –In relaxed state, thin and thick filaments overlap slightly \newline % Row Count 8 (+ 2) –During contraction, thin filaments slide toward the m-line past the thick filaments actin and myosin overlap more \newline % Row Count 11 (+ 3) •Occurs when myosin heads bind to actin and pull cross bridges and power stroke% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Muscle Action Potential}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Brief overview of action potential (AP)–AP dependent on voltage gated Na+ and K+ channel interactions \newline % Row Count 3 (+ 3) –Normal resting membrane voltage \newline % Row Count 4 (+ 1) •There is a difference in charges inside the cell vs outside –Inside charge is negative compared to outside (outside value is 0) \newline % Row Count 7 (+ 3) •Na+ at high concentration outside the cell vs inside•K+ at high concentration inside the cell vs outside% Row Count 10 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Excitation-Contraction (E-C) Coupling}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Events that transmit AP along sarcolemma lead to sliding of myofilaments \newline % Row Count 2 (+ 2) •AP brief; ends before contraction \newline % Row Count 3 (+ 1) –However, causes rise in intracellular Ca2+contraction \newline % Row Count 5 (+ 2) •Latent period \newline % Row Count 6 (+ 1) –Time when E-C coupling events occur \newline % Row Count 7 (+ 1) –Time between AP initiation and beginning of contraction% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Events in Generation of an Action Potential}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Depolarizationphase - generation and propagation of an action potential (AP) \newline % Row Count 2 (+ 2) –End plate potential spreads to adjacent membrane areas \newline % Row Count 4 (+ 2) –Voltage-gated Na+ channels open–Na+ influx decreases membrane voltage (makes less negative) toward critical voltage called threshold \newline % Row Count 7 (+ 3) •Membrane voltage in which AP will begin \newline % Row Count 8 (+ 1) –If threshold reached, AP initiated \newline % Row Count 9 (+ 1) •Rapid increase in amount of open voltage gated sodium channels \newline % Row Count 11 (+ 2) •Rapid Na+ influx into the cell leads to fast positive change in voltage of the intracellular side of membrane \newline % Row Count 14 (+ 3) •Na+ flows into the cell, down its electrochemical gradient \newline % Row Count 16 (+ 2) –Once initiated, is unstoppable muscle fiber contraction% Row Count 18 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Neuromuscular Junction}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Situated midway along length of muscle fiber \newline % Row Count 1 (+ 1) •Axon terminal and muscle fiber separated by gel-filled space called synaptic cleft \newline % Row Count 3 (+ 2) •Synaptic vesicles of axon terminal contain neurotransmitter acetylcholine (ACh) \newline % Row Count 5 (+ 2) •Junctional folds of sarcolemma contain ACh receptors \newline % Row Count 7 (+ 2) –nAChR (nicotinic acetylcholine receptor) \newline % Row Count 8 (+ 1) •NMJ includes axon terminals, synaptic cleft, junctional folds% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chemical and Electrical Gradients of Muscle}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Chemical gradients of skeletal muscle at rest–Comparison intracellular {[}X{]} vs. extracellular {[}X{]} (Sarcoplasmic vs. interstitial) \newline % Row Count 3 (+ 3) •Intracellular {[}Ca{]} very low•Intracellular {[}Na{]} very low \newline % Row Count 5 (+ 2) •Intracellular {[}K{]} high \newline % Row Count 6 (+ 1) •At rest, the average skeletal muscle cell internal membrane voltage (charge at the surface of the intracellular portion of the plasma membrane) is -95mV with respect to a 0 mV outside membrane voltage \newline % Row Count 11 (+ 5) –The charge at the surface of the extracellular side of the membrane is almost always 0mV% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chemical and Electrical Gradients of Muscle}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Generic graphic for a skeletal muscle cell \newline % Row Count 1 (+ 1) –Compares membrane voltage and concentrations of important ions inside vs. outside% Row Count 3 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{concentrations are also applicable to most neurons} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Events at the Neuromuscular Junction}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Nerve impulse arrives at axon terminal  ACh released into synaptic cleft \newline % Row Count 2 (+ 2) •ACh diffuses across cleft (from high concentration to low) and binds with ACh receptors on sarcolemma  \newline % Row Count 5 (+ 3) •Electrical events  generation of action potential% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Generation of an Action Potential}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Resting sarcolemma polarized \newline % Row Count 1 (+ 1) –Voltage across membrane different \newline % Row Count 2 (+ 1) •Action potential in sarcolemma caused by changes in electrical charges \newline % Row Count 4 (+ 2) •Occurs in three steps \newline % Row Count 5 (+ 1) –End plate potential \newline % Row Count 6 (+ 1) –Depolarization \newline % Row Count 7 (+ 1) –Repolarization% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Events in Generation of an Action Potential}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•AP spreads across sarcolemma •Voltage-gated Na+ channels open in adjacent sarcolemma portions causing them to depolarize to threshold \newline % Row Count 3 (+ 3) –Spreads across sarcolemma very quickly% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Events of Excitation-Contraction (E-C) Coupling}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•AP propagated along the sarcollema and into T-tubules \newline % Row Count 2 (+ 2) •AP travels down into the T-tubules where it activates DHP receptors \newline % Row Count 4 (+ 2) •DHP receptors \newline % Row Count 5 (+ 1) –These voltage-sensitive proteins allow a small amount of calcium to flow into the sarcoplasm but also mechanically stimulate the Ryanodine receptors on the SR \newline % Row Count 9 (+ 4) •The Ryanodine receptors are the calcium "flood gates" of the SR \newline % Row Count 11 (+ 2) –When stimulated by the DHP receptors, the ryanodine receptors allow Ca2+ release from SR into the sarcoplasm \newline % Row Count 14 (+ 3) –This increases sarcoplasmic calcium concentration supplying the majority of Ca2+ necessary for contraction of skeletal muscle% Row Count 17 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Physiology of Skeletal Muscle Fibers}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•For skeletal muscle to contract \newline % Row Count 1 (+ 1) –Activation (at neuromuscular junction) \newline % Row Count 2 (+ 1) •Must be nervous system stimulation \newline % Row Count 3 (+ 1) •Must generate action potential in sarcolemma \newline % Row Count 4 (+ 1) \seqsplit{–Excitation-contraction} coupling \newline % Row Count 5 (+ 1) •Action potential propagated along sarcolemma \newline % Row Count 6 (+ 1) •Intracellular Ca2+ levels must rise briefly leading to the onset of contraction% Row Count 8 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Nerve Stimulus and Events at the NMJ}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Skeletal muscles stimulated by somatic motor neurons \newline % Row Count 2 (+ 2) –Under voluntary control•Axons of motor neurons travel from central nervous system via nerves (bundles of mostly neuron axons) to skeletal muscle \newline % Row Count 5 (+ 3) •Each axon may form several branches as it enters whole muscle \newline % Row Count 7 (+ 2) •Each axon ending forms a neuromuscular junction with single muscle fiber% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Destruction of Acetylcholine}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•ACh effects quickly terminated by enzyme acetylcholinesterase in synaptic cleft \newline % Row Count 2 (+ 2) –Breaks down ACh to acetate and choline \newline % Row Count 3 (+ 1) –Prevents continued muscle fiber contraction in absence of additional stimulation% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Gen of an Action Potential Across the Sarcolemma}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•End plate potential (local depolarization) \newline % Row Count 1 (+ 1) –ACh binding opens chemically (ligand) gated ion channels \newline % Row Count 3 (+ 2) –Simultaneous diffusion of Na+ (inward) and K+(outward) \newline % Row Count 5 (+ 2) •More Na+ diffuses in, so interior of sarcolemma becomes less negative \newline % Row Count 7 (+ 2) –Local depolarization = end plate potential% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Events in Generation of an Action Potential}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Repolarization – restoring electrical conditions of RMP \newline % Row Count 2 (+ 2) –Voltage-gated K+ channels begin to open \newline % Row Count 3 (+ 1) –K+efflux (outflow) begins to outpace Na+ influx•rapidly restores resting polarity (makes negative again) \newline % Row Count 6 (+ 3) •Na+ are closing, eventually decreasing Na+ influx \newline % Row Count 8 (+ 2) –Another muscle fiber depolarization AP cannot be stimulated \newline % Row Count 10 (+ 2) •in refractory period until repolarization complete \newline % Row Count 12 (+ 2) –Eventually, K+ channels close (lowers K+ efflux) \newline % Row Count 14 (+ 2) –Chemical and electrical conditions of resting state restored by Na+-K+pump and K+ leaking out of the cell through K+leak channels% Row Count 17 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Channels Involved in Initiating Muscle Contraction}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{•Nerve impulse (AP) reaches axon terminal voltage-gated calcium channels open ACh released to synaptic cleft \newline % Row Count 3 (+ 3) •ACh binds to its receptors on sarcolemma  opens ligand-gated Na+ and K+ channels  end plate potential  \newline % Row Count 6 (+ 3) •Opens voltage-gated Na+ channels  AP propagation  \newline % Row Count 8 (+ 2) •Voltage-sensitive proteins in T tubules (DHP receptors) change shape and activate the Ryanodine receptorsSR releases Ca2+ to cytosol% Row Count 11 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}