Boolean Algebra Rules	
$A+0=A$	
$A+1=1$	
$\mathrm{A} \times 0=0$	
$\mathrm{A} \times 1=\mathrm{A}$	
$A+A=A$	
$A+A^{\prime}=1$	
$A \times A=A$	
$A \times A^{\prime}=0$	
$\mathrm{A}^{\prime \prime}=\mathrm{A}$	
$A+A^{\prime} B=A+B$	
$A+A B=A(1+B)=A(1)=A$	
$(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})=\mathrm{A}+\mathrm{BC}$	
$A+B=B+A$	
$A B=B A$	
$A+B+C=A+(B+C)$	
$A(B+C)=A B+A C$	
Laws	
Communative Law	$A \times B=B \times A$
	$A+B=B+A$
Associative Law	$A \times(B \times C)=(A \times B) \times C$
	$A+(B+C)=(A+B)+C$
Distributive Law	$A \times(B+C)=A \times B+A \times C$
	$A+B \times C=(A+B)(A+C)$

DeMorgan Rules
$(A B)^{\prime}=A^{\prime}+B^{\prime}$
$(A+B)^{\prime}=A^{\prime} B^{\prime}$
$Y^{\prime}=A^{\prime} \times B \times C$
$Y=\left(A^{\prime} \times B \times C\right)^{\prime}$
$Y=A \times B^{\prime} \times C^{\prime}$
$(A \times B \times C)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}$
$(A+B+C)^{\prime}=A^{\prime} \times B^{\prime} \times C^{\prime}$

Theorems	
Theorem 1	$\mathrm{X}+\mathrm{X} \cdot \mathrm{Y}=\mathrm{X}$
Theorem 2	$\mathrm{X}+\mathrm{X}^{\prime} \cdot \mathrm{Y}=\mathrm{X}+\mathrm{Y}$
Theorem 3	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}+\mathrm{Y} \cdot \mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}$
Theorem 4	$\mathrm{X}(\mathrm{X}+\mathrm{Y})=\mathrm{X}$
Theorem 5	$\mathrm{X}\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)=\mathrm{X} \cdot \mathrm{Y}$
Theorem 6	$(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)=\mathrm{X}$
Theorem 7	$(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)=\mathrm{X} \cdot \mathrm{Z}+\mathrm{X}^{\prime} \cdot \mathrm{Y}$
Theorem 8	$(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)$

Binary \& Gray Code

Decinal mumbers	Binary code	Eray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1100	1110
12	1101	1010
13	1110	1001
14	1111	1000
15		

cheatography.com/jjlondon/

Published 18th October, 2018.
Last updated 18th October, 2018.
Page 1 of 1 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

