Fundamental or Base Quanitites

The quantities which do not depend upon other quantities for their complete definition are known as fundamental or base quantities. e.g.: length, mass, time, etc.

Derived Quantities

The quantities which can be expressed in terms of the fundamental quantities are known as derived quantities.
e.g.: Speed = distance/time, Volume = length*breadth

Units of Physical Quantities

The chosen reference standard of measurement in multiples of which, a physical quantity is expressed is called the unit of the quantity.
e.g.: Physical Quantity = Numerical Value x Unit

Length Conversion	
Metric to American	
2.54 cm	1 in
American	
12 inches (in)	1 foot (ft)
3 feet (ft)	1 yard (yd)
220 yards (yd)	1 furlong (fur)
8 furlongs (fur)	1 mile
1 mile	1760 yd, $5280 \mathrm{ft}, 63360$ in

Mass Conversion

Metric to American	
1 kg	2.2046 lbs
1 g	0.0353 oz
American	
1 loz	16 dr
1 lb	16 oz
1 cwt	100 lbs
1 ton	$20 \mathrm{cwt}, 2000 \mathrm{lbs}$
1 tonne	1000 kg

SI Base Units		
Base Unit	Unit	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	s
Temperature	Kelvin	k
Electric Current	Ampere	A
Intensity of Light	Candela	cd
Amount of Substance	Mole	mol

Prefixes for Different Powers of 10					
Power of $\mathbf{1 0}$	Prefix	Symbol	Power of 10	Prefix	Symbol
10^{18}	exa	E	10^{-1}	deci	d
10^{15}	peta	P	10^{-2}	centi	C
10^{12}	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	m
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	kilo	k	10^{-12}	pico	p
10^{2}	hecto	h	10^{-15}	femto	f
10^{1}	deca	da	10^{-18}	atto	a

Dimensional Formula

The relation which expresses physical quantities in terms of appropriate powers of fundamental quantities.

Use of Dimensional Analysis

To check the dimensional correctness of a given physical relation.
To derive relationship between different physical quantities.
To convert units of a physical quantity from one system to another.

By jianandre1011
cheatography.com/jianandre1011/

Not published yet.
Last updated 11th September, 2022.
Page 1 of 1 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

