

Genetics and Molecular Biology Cheat Sheet by jh89614 via cheatography.com/34484/cs/10995/

Structure of DNA

- -DNA is a double helix
- -DNA consists of 2 strands that run antiparallel
- -one strand run 5' to 3' the other strand runs 3' to 5'
- -DNA is a polymer consisting of repeating units of nucleotides
- -Nucleotides consists of a 5-carbon sugar, phosphate, and nitrogen base
- -4 nitrogen bases: adenine + thymine / cytosine + guanine
- -nitrogenous bases are paired together by hydrogen bonds
- -a chromatin is when DNA combines with histones (proteins)
- -a nucleosomes is when double helix of DNA wraps around a core of histones

enc		

Mender's Laws	
Law of Segregation	Law of Independent Assortment
-law of segregation states that the 2 alleles of heritable character separate and segregate during gamete formation and end up in different gametes	-law of independent assortment states that each pair of alleles segregates independently into gametes
-this law accounts for the 3:1 ratio that Mendel noticed in the F2 generation	-Mendel identified this law by following 2 characteristics at the same time (dihybrid

Scientists

scientist s	experiment	conclusion	
Frederick Griffith	he injected mice with different strands of pneumococcus	somehow the R strand transformed into S strain by the transforming principle	
Oswald Avery	He exposed the R strand of pneumococcus to streptococcus to purify the S strain protein		

Scientists (cont)

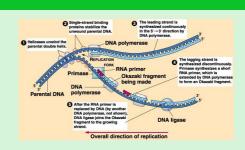
Alfred	They used radioactive	the phage coat packages and
Hershey	sulfur and phosphorus	delivers phage DNA into bacteria
&	to determine if protein or	and that DNA carries the
Martha	DNA was the	instructions needed to replicate the
Chase	transforming principle	phages in the bacteria. DNA is the
	using bacteriophages	genetic material
Erwin	worked with	he concluded his two rules:
Chargaff	nitrogenous bases to	purines go with pyrimidines and all
	determine structure of	species have different amount of
	DNA	nitrogenous bases

studied Franklin's X rays DNA is a double helix

Francis Crick

James

Watson


&

Rosalind used X-ray
Franklin crystallography to
& complete experiment

of the structure of DNA

Maurice Watkins the X ray proved DNA to be a helix

DNA Replication

Vocab

alleles	any of the alternative versions of a gene
character	an observable heritable feature
dominant allele	an allele that is fully expressed in phenotype of a heterozygote
F1 generation	the first filial, or hybrid, offspring in a series of a genetic cross (children)
genotype	genetic makeup, or set of alleles, of an organism
heterozygo us	having two different alleles for a given gene

By jh89614 cheatography.com/jh89614/ Not published yet. Last updated 27th February, 2017. Page 1 of 3. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

Genetics and Molecular Biology Cheat Sheet by jh89614 via cheatography.com/34484/cs/10995/

DNA Replication in Eukaryotes

Vocab (co	ont)
homozy	having two identical alleles for a given gene
gous	
linked genes	genes located close enough together, on a chromsome that they tend to be inherited together
P generati on	the original organism that you started studying (parents)
phenot ype	the physical characteristics of an organisms, which are determined by genotype
trait	a detectable variant in a genetic character

Mendel's experiment		
Facts	Advantages of Garden Pea	
-mendel discovered the basic principles of heredity by breeding garden peas	-available in many varieties	
-experiment started with varities that were true-breeding	-distinct heritable traits	
-F2 plants revealed 2nd law of segregation and the law of independent assortment	-pea plants can be controlled by cutting off stamen	
	-each pea plants have male & female organs	
	-Mendel could cross-fertilize to produce many progeny	

Non-Mendalic	dalion Genetics		
Incomplete Dominance	when two alleles of the same gene blend together EX: pink flower		
Epistasis	when one gene depends on another gene for it to be expressed		
Sex-linked Genes	genes found only on the sex chromsomes; mainly found on X chromosome because X is larger		
Co- dominance	when two genes work together and both show through EX: speckled chicken		
Polygenic Trait	many genes control one trait		

	There are 4 main steps in replication: initiation, elongation, termination, and proof-reading				
	1) replication begins at origin of replication, where 2 strands of DNA seperate to form replication bubbles	2) bubble expands as replication proceeds in both directions at once	3) at each end of the replication bubble is a replication fork. Eventually, replication bubbles fuse	4) the enzyme DNA polymerase catalyzes the antiparallel elongation of the new DNA strands	
	5) DNA polymerase builds a new strand (going 5' to 3') by moving along the template strand and pushing the replication fork ahead of it.	6) DNA polymerase cannot initiate synthesis, it can only add nucleotides to the 3' end of the preexisting chain. This preexisting chain consists of RNA and is called RNA primer. A Primer (which is a enzyme) makes the primer by joining together RNA nucleotides	7) DNA polymerase replicates the 2 original strands of DNA differently. although it builds both new strands in the 5' to 3' direction	8) The leading strand forms toward the replication fork in a linear fashion	
	9) the lagging strand forms in the direction away from the replication fork in a series of fragments called Okazaki	10) helicases (which are enzymes) untwist the double helix at the replication fork. Helicases seperate the 2 parental strands, making the strands available	11) The single-stranded biding proteins hold the 2 DNA strands apart	Topoisomer ases lessen the tension on the tightly wound helix by breaking, swiveling, and rejoining the DNA	

By jh89614 cheatography.com/jh89614/

Not published yet. Last updated 27th February, 2017. Page 2 of 3.

fragments

Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

strands

Genetics and Molecular Biology Cheat Sheet by jh89614 via cheatography.com/34484/cs/10995/

DNA Replication in Eukaryotes (cont)					
13) DNA	14)	15) each time DNA	16) these		
polymerase	damaged	replicates some	protective		
proof reads the	regions	nucleotides from the end of	ends are		
work of	of DNA	the chromosomes are lost.	called		
matching the	are	To prevent the lost of	telomeres.		
right	excised	genes, eukaryotes have	telomeres		
nucleotides	by DNA	specific nucleotide	are created		
together	nuclease	sequences (TTAGGG) at	and		
(adenine +		the end of chromsomes	maintained		
thymine//guanin		that repeat	by the		
e+ cytosine)			enzyme		
			telomerase		

17) Body cells conatin little telomerase, so every time DNA replicates, the telomeres get shorter

By jh89614 cheatography.com/jh89614/ Not published yet. Last updated 27th February, 2017. Page 3 of 3. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com