\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Jerstellar} \pdfinfo{ /Title (genphysics-q1-module.pdf) /Creator (Cheatography) /Author (Jerstellar) /Subject (GenPhysics q1 module Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{D11E11} \definecolor{LightBackground}{HTML}{FCF0F0} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{GenPhysics q1 module Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Jerstellar} via \textcolor{DarkBackground}{\uline{cheatography.com/204102/cs/43564/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Jerstellar \\ \uline{cheatography.com/jerstellar} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 16th June, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 1 - Measurement}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Fundamental/Base Quantities - group of physical quantities that can be measured {\bf{without relying on other quantities}}; {\emph{(mass, length, molar mass, luminous intensity)}} \newline % Row Count 4 (+ 4) Derived Quantitites - use any {\bf{combination of fundamental quantities}}; {\emph{(velocity, acceleration, rate, force)}} \newline % Row Count 7 (+ 3) Convertion of Units - convertion between different units for the same quantity \newline % Row Count 9 (+ 2) Unit prefixes - placed before the symbol of a unit to specify the order of magnitude of the quantity; used for very large or very small numbers% Row Count 12 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Prefixes}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1717732342_Screenshot 2024-06-07 115318.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.672 cm} x{3.572 cm} x{2.356 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Notations}} \tn % Row 0 \SetRowColor{LightBackground} Regular \seqsplit{Notation} & standard way of writing numbers & seven hundred sixty = 760 \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \seqsplit{Scientific} \seqsplit{Notation} & convenient and shorthand way of writing really large or really small numbers & 280,000,000 = 2.8 × 10\textasciicircum{}8\textasciicircum{} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} & & 0.000817 = 8.17 × 10\textasciicircum{}-4\textasciicircum{} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 2 - Accuracy and Precision}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Significant Figures - digits that carry meaningful contributions to its measurement resolutions \newline % Row Count 2 (+ 2) 1. Non-zero digits are always significant \newline % Row Count 3 (+ 1) 2. Any zeroes between two significant digits are significant \newline % Row Count 5 (+ 2) 3. A final zero or trailing zeroes in the decimal portion only are significant \newline % Row Count 7 (+ 2) {\bf{13}}000 = 2 sig. figs. \newline % Row Count 8 (+ 1) {\bf{0.0041}}0 = 5 sig. figs. \newline % Row Count 9 (+ 1) {\bf{9.6010}} × 10\textasciicircum{}8\textasciicircum{} = 5 sig. figs. \newline % Row Count 10 (+ 1) Accuracy - describes how close a measured value is to the true value, it is expressed using relative error: \newline % Row Count 13 (+ 3) {\bf{Relative error = |(measured value - expected value)/(expected value)| × 100}} \newline % Row Count 15 (+ 2) Precision - degree of exactness with which a measurement is made and stated; for example, 1.324 is more precise than 1.3; it is expressed as a relative or fractional uncertainty \newline % Row Count 19 (+ 4) {\bf{Relative Uncertainty = (uncertainty / measured quantity) × 100}}% Row Count 21 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 3 - Vector and Scalar Quantities}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1717772236_Screenshot 2024-06-07 225157.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Scalar quantities are described by a magnitude (size or numerical value) only; {\emph{(Mass - amount of matter in your body = {\bf{g}} or {\bf{kg}})}} \newline -Vector quantities give both the magnitude and direction; {\emph{(Weight - amount of gravitational force exerted on the matter = {\bf{kg⋅m/s\textasciicircum{}2\textasciicircum{}}} or {\bf{N}})}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Vectors and Addition of Vectors}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Vectors - can be represented by a ray line {\bf{→}}; the length of the arrow represents the {\emph{magnitude }}while the direction of the arrow represents the {\emph{direction}} of the vector; the tail is called the {\emph{initial point or the origin}} \newline % Row Count 5 (+ 5) Vector Direction - North, South, East, West; however, some vectors are projected to a certain degree: {\bf{30° North}} \newline % Row Count 8 (+ 3) Magnitude of a Vector - shown by the length of the arrow with a {\bf{chosen scale}} \newline % Row Count 10 (+ 2) Resultant Vector - vector sum or difference of all individual vectors% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Methods of Adding Vectors}} \tn % Row 0 \SetRowColor{LightBackground} Graphical & Analytical \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} choose appropriate scale and frame of reference & Vectors in the same or opposite direction must be added with sign convention; North and East (↑→) are {\bf{positive}} and South and West (\textasciicircum{}←\textasciicircum{}↓) are {\bf{negative}} \tn % Row Count 10 (+ 9) % Row 2 \SetRowColor{LightBackground} use tools of measurement (basta may minemeasure ka bes) & Vectors perpendicular or in right-angle, use {\bf{pythgorean theorem for magnitude}} and {\bf{trigonometric functions for direction}} \tn % Row Count 17 (+ 7) % Row 3 \SetRowColor{white} & Vectors not perpendicular, use {\bf{law of cosine for magnitude}} and {\bf{law of sine for direction}} \tn % Row Count 22 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-Another way is the component method were the x and y components of the vectors are determined to find the resultant} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 4 - Displacement and Velocity}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Motion - can also be described through visual representations like graphs \newline % Row Count 2 (+ 2) Acceleration - rate of change in velocity \newline % Row Count 3 (+ 1) Constant Accelaration - when an object is moving with the same rate of change of velocity \newline % Row Count 5 (+ 2) Displacement - shortest distance from an object to the reference point; {\bf{areas of velocity vs. time curve}} \newline % Row Count 8 (+ 3) Velocity - rate of change of position; {\bf{areas of displacement vs. time curve}} \newline % Row Count 10 (+ 2) Average Velocity - total displacement of a body over a time interval \newline % Row Count 12 (+ 2) Instantaneous Velocity - velocity at a specific instant in time% Row Count 14 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{For more examples:}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{\{\{popup="https://docs.google.com/document/d/1WkuR9dLndEkpB1Exxb95RBskFU3ySzbMmbHsn1n94o0/edit?usp=sharing"\}\}Physics Calculation Worksheet\{\{/popup\}\}% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 5 - Acceleration}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Acceleration - slope in velocity vs. time; if velocity is constant then there is no acceleration \newline % Row Count 2 (+ 2) Instantaneous Acceleration - acceleration at any instant time (only one point in time) {\bf{(△v)/(△t)}} \newline % Row Count 5 (+ 3) Average Acceleration - {\bf{(total velocity)/(total elapsed time)}}% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Slope of acceleration}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1718021722_Screenshot 2024-06-10 201605.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Velocity (Y) is divided by Time (X) in a velocity-time graph and position-time graph \newline -To get the total acceleration (only in velocity-time graph), get the summation of all calculated acceleration and divide it by the points in the graph (time periods); the unit will be {\bf{m/s\textasciicircum{}2\textasciicircum{}}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 6 - Uniformly Acc. Motion \& Free-Fall}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Uniformly Accelerated Motion (UAM) - motion with constant acceleration; velocity changes by equal amounts in equal intervals \newline % Row Count 3 (+ 3) Free-Fall/Vertical Motion - a uniformly accelerated motion; objects in motion under gravity only {\bf{(g = 9.8 m/s\textasciicircum{}2\textasciicircum{})}}% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{UAM equations in one dimension}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1718200408_Screenshot 2024-06-12 215438.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{UAM equations in one dimension (free-fall)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1718200669_Screenshot 2024-06-12 215654.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-the {\bf{a}} is replaced by {\bf{g}}, -9.8 m/s\textasciicircum{}2\textasciicircum{} for downward acceleration and vice versa} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 7 - Components of Projectile}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Projectile - any object that is thrown or otherwise projected into the air \newline % Row Count 2 (+ 2) Trajectory - characteristic path of a projectile; a parabola \newline % Row Count 4 (+ 2) Projectile Motion - describes the movement of a projectile along its trajectory% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 8 - Time at Max Height of Trajectory}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Half Time of Flight - time it takes for a projectile to reach the maximum height; {\bf{t = √(2dᵧ/g)}} \newline % Row Count 3 (+ 3) {\emph{(where dᵧ = (Vᵢᵧt)/($\frac{1}{2}$gt$^{\textrm{2}}$), t = time of flight, g = acceleration due to gravity)}} \newline % Row Count 5 (+ 2) Total time of flight - double the half time of flight; {\bf{t = (Vᶠᵧ - Vᵢᵧ)/g}} \newline % Row Count 7 (+ 2) {\emph{(where Vᶠᵧ = final vertical velocity, Vᵢᵧ = initial vertical velocity, g = acceleration due to gravity, t = time of travel)}} \newline % Row Count 10 (+ 3) Maximum Height - highest point the projectile can reach in the trajectory; the {\bf{displacement formula}} is used: {\bf{dᵧ = (Vᵢᵧt)/($\frac{1}{2}$gt$^{\textrm{2}}$)}} \newline % Row Count 13 (+ 3) {\emph{(where dᵧ = vertical displacement, Vᵢᵧ = initial vertical velocity, t = time of flight, g = acceleration due to gravity)}} \newline % Row Count 16 (+ 3) Range of the Projectile - distance from the initial point on the ground to the final point it reaches; {\bf{dₓ = Vᵢₓt}} \newline % Row Count 19 (+ 3) {\emph{(where dₓ = range, Vᵢₓ = initial horizontal velocity, t = time of flight)}} \newline % Row Count 21 (+ 2) X and Y Component of the Velocity - used to determine the graph of trajectory; {\bf{Vᵢₓ = Vᵢ cos θ}} and {\bf{Vᵢᵧ = Vᵢ sin θ}} \newline % Row Count 24 (+ 3) {\emph{(where Vᵢₓ = initial horizontal velocity, Vᵢᵧ = initial vertical velocity, Vᵢ = inital velocity, θ = angle of trajectory)}}% Row Count 27 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 9 - Circular Motion}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Circular Motion - motion along a circular path in which the direction of the velocity is always changing; the speed is tangent to the path and the force towards the center is constant \newline % Row Count 4 (+ 4) Tangential Speed {\bf{(vᵣ)}} - speed of an object in circular motion; depends on the distance from the object to the center. If the {\bf{tangential speed is constant}}, the motion is said to be {\bf{uniform circular motion}} \newline % Row Count 9 (+ 5) Centripetal Acceleration - acceleration directed toward the center of the circular path; {\bf{centripetal acceleration = (tangential speed)$^{\textrm{2}}$/(radius of circular path)}} or {\bf{a꜀ = vₜ$^{\textrm{2}}$/r}} \newline % Row Count 13 (+ 4) Tangential Acceleration {\bf{(aᵣ)}} - acceleration of a certain object in a circular motion {\bf{due to change in speed}} \newline % Row Count 16 (+ 3) Non-uniform Circular Motion - an object moving in a circular path with changing velocity \newline % Row Count 18 (+ 2) Centripetal Force - "center-seeking force," net force directed toward the center of the circle; Fₙₑₜ = \seqsplit{F꜀ₑₙₜᵣᵢₚₑₜₐₗ} \newline % Row Count 21 (+ 3) {\emph{(where Fₙₑₜ = m×a; {\bf{Fₙₑₜ = \seqsplit{F꜀ₑₙₜᵣᵢₚₑₜₐₗ} = mass × centripetal acceleration}})}} \newline % Row Count 24 (+ 3) {\bf{F꜀ₑₙₜᵣᵢₚₑₜₐₗ = mass × (tangential speed$^{\textrm{2}}$ / radius of circular)}} OR {\bf{F꜀ = mvₜ$^{\textrm{2}}$/r}}% Row Count 27 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 10 - First Law Motion: Law of Inertia}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Contact Forces - two objects having physical contact with each other (pushing or pulling) \newline % Row Count 2 (+ 2) + Tension Force {\bf{(t)}} - force transmitted through a string, rope, cable, or wire, when it is pulled tight by forces avting on its opposite ends \newline % Row Count 5 (+ 3) + Air Resistance - special type of frictional force that acts upon objects as they travel through the air \newline % Row Count 8 (+ 3) Normal Force {\bf{(N)}} - support force exerted upon an object that is in contact upon another stable object \newline % Row Count 11 (+ 3) + Friction {\bf{(Ff)}} - force exerted by a surface as an object moves across it or makes an effort to move it across \newline % Row Count 14 (+ 3) + Applied Force {\bf{(Fa)}} - force applied to an object by a person or another object \newline % Row Count 16 (+ 2) Non-Contact Forces - objects are subjected to a force but do not need to be in contact with each other \newline % Row Count 19 (+ 3) + Gravitional Force - "{\bf{Weight (W)}}"; the force with which the earth, moon, or other massively large object attracts another towards itself \newline % Row Count 22 (+ 3) {\bf{Newton's First Law of Motion: Law of Inertia}} \newline % Row Count 23 (+ 1) -{\emph{an object at rest stays at rest and an object in motion stays in motion with the same velocity unless acted upon by {\bf{an unbalanced force}}}} \newline % Row Count 26 (+ 3) -valid for an inertial reference frame \newline % Row Count 27 (+ 1) Inertia - tendency of an object to resist changes in its motion; the heavier the mass, the greater is the inertia \newline % Row Count 30 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 10 - First Law Motion: Law of Inertia (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Inertial Frame of Reference - frame of reference with constant velocity and non-accelerating; \newline % Row Count 2 (+ 2) For example, you are standing, and your speed relative to the ground is zero, but your speed relative to the sun is 2.97x104 m/s \newline % Row Count 5 (+ 3) Free Body Diagram - shows relative magnitude and direction of all forces acting upon an object; direction of arrow shows direction of force and the size of arrow shows the magnitude of force% Row Count 9 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Free Body Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1718368871_Screenshot 2024-06-14 204120.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 11 - 2nd Law of Motion: Law of Acceleration}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-{\emph{The acceleration produced by a net force on an object is directly proportional to the magnitude of the net force, is in the same direction as the net force, and is inversely proportional to the mass of the object}} \newline % Row Count 5 (+ 5) -{\bf{a is directly proportional to F where m is constant}} \newline % Row Count 7 (+ 2) -{\bf{a is inversely proportional to 1/m where F is constant}} \newline % Row Count 9 (+ 2) {\bf{acceleration = (net force)/(mass); a = F/m; F = ma}} \newline % Row Count 11 (+ 2) Weight - gravitational force exerted by a large body, measured in Newton (N); {\bf{W = mg}}% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 12 - 3rd Law of Motion: Law of Interaction}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-{\emph{when one object exerts a force (action) on a second object, the second object exerts a force (reaction) on the first object that is equal in magnitude but opposite in direction}} \newline % Row Count 4 (+ 4) {\bf{F₁ = F₂ or force of action = force of reaction}} \newline % Row Count 6 (+ 2) Friction - force that opposes the motion between two surfaces that are in contact \newline % Row Count 8 (+ 2) Coefficient of Friction - level of friction that different material exhibit; {\bf{μ = Ff/N}} \newline % Row Count 10 (+ 2) {\emph{(where μ = coefficient of friction, Ff = friction, N = normal force)}} \newline % Row Count 12 (+ 2) Static Friction {\bf{(fₛ)}} - acts on objects when they are resting on a surface \newline % Row Count 14 (+ 2) Sliding Friction or Kinetic Friction {\bf{(fₖ)}} - force that acts between moving surfaces% Row Count 16 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 13 - Work}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Work - amount of force applied on an object over a displacement; \newline % Row Count 2 (+ 2) {\bf{W = F×d}} \newline % Row Count 3 (+ 1) {\emph{SI unit of Joules (J)}} \newline % Row Count 4 (+ 1) If the force is at an angle to the displacement using dot product: \newline % Row Count 6 (+ 2) {\bf{W = F x d x cos θ}}% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 14 - Power}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Power - measures rate at which work is done or energy is transformed; {\bf{P = (Work)/(Time)}} \newline % Row Count 2 (+ 2) SI Unit: Joule per second {\bf{(J/s)}} \newline % Row Count 3 (+ 1) if Force and Displacement were given: {\bf{P = (Force)(Displacement)/(Time)}} \newline % Row Count 5 (+ 2) if it's in an angle: {\bf{P = \seqsplit{(Force)(Displacement)(cosine} Ø)/(Time)}} \newline % Row Count 7 (+ 2) if Velocity is given: {\bf{P = (Force)(Velocity)}} \newline % Row Count 8 (+ 1) if it's in an angle: {\bf{P = (Force)(Velocity)(cosine Ø)}}% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 15 - Energy and Energy Conservation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Energy - property of an object or system that enables it to do work; measured in {\bf{Joules}} \newline % Row Count 2 (+ 2) Mechanical Energy - energy due to the position of something or the movement of something; {\bf{sum of kinetic and potential energy}} and therefore always {\bf{stay the same}} \newline % Row Count 6 (+ 4) + Potential Energy - {\bf{stored energy}}; form of energy due to the position of an object to the other objects or a reference point. \newline % Row Count 9 (+ 3) Gravitational Potential Energy - energy due to the object's position {\bf{relative to the gravitational source}}; depends on the height from a zero level \newline % Row Count 13 (+ 4) GPE = (mass)(acceleration due to gravity)(height) or {\bf{GPE = mgh}} \newline % Row Count 15 (+ 2) Elastic Potential Energy - energy stored in a compressed or stretched spring or object \newline % Row Count 17 (+ 2) EPE = ($\frac{1}{2}$) (spring constant)(distance compressed or stretched)$^{\textrm{2}}$ or {\bf{EPE = $\frac{1}{2}$kx$^{\textrm{2}}$}} \newline % Row Count 19 (+ 2) + Kinetic Energy - Work done to change the speed of an object; depends on mass and speed \newline % Row Count 21 (+ 2) KE = ($\frac{1}{2}$)(mass)(speed)$^{\textrm{2}}$ or {\bf{KE = $\frac{1}{2}$mv$^{\textrm{2}}$}} \newline % Row Count 22 (+ 1) Work-Energy Theorem - whenever work is done, energy changes; if work is done on an object, the net work is equal to its change in kinetic energy \newline % Row Count 25 (+ 3) Workₙₑₜ = change in kinetic energy or Workₙₑₜ = △KE or \newline % Row Count 27 (+ 2) {\bf{Workₙₑₜ = $\frac{1}{2}$mv$^{\textrm{2}}$(final) - $\frac{1}{2}$mv$^{\textrm{2}}$(initial)}}% Row Count 29 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 16 - Center of Mass}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/jerstellar_1718542563_Screenshot 2024-06-16 205023.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-The formula for computing the velocity of the center of mass of a system in three dimensions may be obtained by replacing x, y, and z by {\bf{vx, vy and vz}}, respectively.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 17 - Momentum and Impulse}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Momentum - describes the difficulty in changing the state of motion of a moving object; {\bf{p = mass×velocity}} \newline % Row Count 3 (+ 3) Impulse (I) - product of the force and the time it takes for the force to be applied; SI unit of {\bf{kg.m/s}} \newline % Row Count 6 (+ 3) {\bf{I = Force×time}} or {\bf{I = m(vf - vi)}} \newline % Row Count 7 (+ 1) Impulse-Momentum Theorem - since p = mv, {\bf{I = △p}}% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Module 18 - Conservation of Momentum}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Law of Conservation of Momentum - the total momentum before the collision is equal to the momentum of the system after the collision; {\bf{pf = pi}} \newline % Row Count 3 (+ 3) Coefficient of Restitution {\bf{(e)}} - negative ratio of the relative velocity of two colliding bodies after a collision to the relative velocity before the collision; {\bf{e = (vₓ₂ - vᵧ₂)/(vₓ₁ - vᵧ₁)}} \newline % Row Count 8 (+ 5) {\emph{(where vₓ₂ and vᵧ₂ =velocities of bodies X and Y after collision, vₓ₁ and vᵧ₁ = velocities of bodies X and Y before collision)}} \newline % Row Count 11 (+ 3) The coefficient of restitution can have a value from {\bf{0 to 1}}, depending on the type of collision \newline % Row Count 13 (+ 2) Elastic Collision - both momentum and kinetic energy are conserved; the coefficient of restitution is {\bf{equal to 1}} \newline % Row Count 16 (+ 3) Inelastic Collision - total momentum is conserved but the total kinetic energy is not conserved, some of the kinetic energy goes into other forms like {\bf{heat, sound, and permanent deformation}}; the coefficient of restitution for inelastic collision is between {\bf{0 to1}} \newline % Row Count 22 (+ 6) Perfectly Inelastic Collision - interacting bodies {\bf{stick together and move as one}} after a collision; the coefficient of restitution for inelastic is {\bf{0}}% Row Count 26 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{YEY! you finished q1, I am so proud of you :)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}