

by Jerstellar via cheatography.com/204102/cs/43494/

Module 1 - Matter and its Properties

Matter - has mass and occupies space.

3 States of Matter				
State	Definition	Examples		
Solid	rigid; has a fixed shape and volume	ice cube, diamond, iron bar		
Liquid	has a definite volume but takes the shape of its container	gasoline, water, blood		
Gas	has no fixed volume or shape; takes the shape of its container	air, helium, oxygen		

Phase Changes of Matter

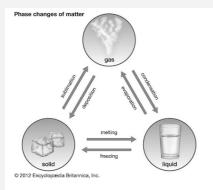


Figure 1.1. Phase Changes of Matter

Elements and Compounds					
Elements	cannot be broken down into other substances by chemical means	iron, aluminum, oxygen, and hydrogen			
Compound	substances that have the same composition no matter where we find them; can be broken down into elements	Water (H20), Salt (NaCl), Ammonia (NH3)			

Physical and Chemical Properties and Changes				
Physical Properties	odor, color, volume, state (gas, liquid, or solid), density, melting point, boiling point			
Chemical Properties	burning, digestion, fermentation, rusting, electrolysis			

Other Properties				
Extensive	changes when the amount of material changes	mass, length, volume, shape		
Intrinsive	does not depend on the size of the material	temperature, odor, color, hardness, density		

Mixture and Pure Substances				
Mixture	has variable composition			
	Homogenous	also called a solution; does not vary in composition from one region to another		
	Hetero- genous	contains regions that have different properties from those of other regions		
Pure Substance	always have th	e same composition; either elements or		

Types of bonds					
Ionic	when one atom shifts or transfers	Na ⁺ (1A) and Cl (7A)			
	an electron to another atom;	creates a stable bond			
	metals + nonmetals	(octet rule)			

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 1 of 7.

by Jerstellar via cheatography.com/204102/cs/43494/

Types of bonds (cont)

Covalent atoms share electrons; $O^{2-}(6A)$ and 2 atoms of nonmetals $H^{+}(1A) = H_2O$

Metallic a metal shares an electron with another metal; positively charged ions in electrons

Module 2 - Isotopes, Compounds, Empirical Formula

Atoms have a constant or fixed number of protons

Atomic Number - gives the protons in the nucleus of an atom; represented as $\boldsymbol{\mathsf{Z}}$

Neutral Atom - number of protons is equal to the number of electrons Z = nuclear charge = number of protons = number of electrons in neutral form

Mass Number - sum of the number of protons and neutrons; represented by ${\bf A}$

An atom can be represented by the nuclear symbol ^AzE Nucleons - protons + neutrons

John Dalton's Atomic Theory

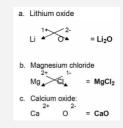
All atoms of an element have the same mass, although isotopes are atoms of the same element but has different numbers of protons Ex: All carbons atoms (Z=6) have 6 protons and electrons, but only 98.89% of naturally occuring carbon atoms have 6 neutrons (A=12)

Chemical Compounds

Radicals/Polyatomic lons - stable groups which form chemical bonds as an intact unit.

The valence numbe is taken as one.

If a molecule contains **more than one radical** (At least two unpaired electrons), the formula uses **parentheses**. Calcium Phosphate - $Ca_3(PO_4)_2$


Some Polyatomic Ions

Monovalent (1 ⁻)		Bivalent (2 ⁻)		Trivalent (3 ⁻)	
Ammonium	$\mathrm{NH_4}^+$	Carbonate	CO₃	Phosphate	PO ₄

Some Polyatomic Ions (cont)					
Acetate	C ₂ H ₃ O ₂	Chromate	CrO ₄	Borate	ВО₃
Chlorate	ClO₃	Oxalate	C ₂ O ₄		
Chlorite	ClO ₂	Sulfate	SO₃		
Bicarbonate	HCO₃	Sulfite	SO ₂		
Biculfate	HSO₄	Peroxide	O ₂		
Hydroxide	ОН				
Nitrate	NO₃				
Nitrite	NO ₂				

Diatomic Molecules	
H ₂	hydrogen
N_2	nitrogen
F ₂	fluorine
O_2	oxygen
l ₂	iodine
Cl ₂	chlorine
Br ₂	bromine

Criss-Cross Method

- -Determine the charge or valence number of the elements
- -Exchange their valence numbers
- -Reducing by their gcf is possible

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 2 of 7.

by Jerstellar via cheatography.com/204102/cs/43494/

Calculating Empirical Formula

Percentage Composition - amounts of the elements for a given amount of compound

Empirical Formula - simpest formula of any compound (smallest ratio of moles); derived from mass analysis

- Determine the given number of moles in each element
- Divide each by the smallest number of moles given
- Multiply each by the smallest number that will turn them into whole numbers.

Example

Zn_{0.21}P_{0.14}O_{0.56}

1. Divide each subscript by the smallest one, which in this case is 0.14: $\frac{Zn_{0.21}P_{0.14}O_{0.56}}{_{0.16} _{0.16} _{0.16} _{0.16}} \longrightarrow Zn_{1.5}P_{1.0}O_{4.0}$

2. Multiply through by the smallest integer that turns all subscripts into integers. We multiply by 2 to make the 1.5 (subscript of Zn) into an integer

Zn _(1,5x2) P _(1,0x2) O _(4,0x2)	Zn ₃ P ₂ O ₂

Calculating Empirical Formula with Molar mass					
Given	Mass number	Quotient	Quotient (x/0.75)	Smallest Ratio (y*2)	
28.03% Mg	24.035	1.15	1.53≈1.5	3	
21.6% Si	28.086	0.75	1	2	
1.16% H	1.16	1.15	1.53≈1.5	3	
49.21% O	49.21	3.08	4.1≈4	8	

Answer = Mg₃Si₂H₃O₈

- -Divide the given percent composition to the mass number of each element
- -Divide each quotient by the smallest number among them
- -Multiply the quotients by the smallest number that will make them whole

For more examples:

Chem Calculation Worksheet

Calculating Molecular Formula By Empirical Formula					
Empirical	Mass	Product	Product (emp*		
Composition	number	(rounded off)	(mass/x))		
Mg₃	24.305	73	6		
Si ₂	28.086	56	4		
Н₃	1.008	3	6		
O ₈	15.999	128	16		
		Σ = 260			

Suppose the molar mass is 520.8; divide it by the summation (520.8/260 \approx 2). Multiply 2 by the empirical compostion of each element. Answer = Mg₆Si₄H₆O₁₆

- -Get the summation summation of the product of each empirical composition to their mass number
- -Divide the summation from the molar mass
- -Multiply the quotient to the empirical composition of each element

Module 3 - Molar Mass, Chem Reactions, Eq

Mole(mol) - SI unit for determining molar mass; amount of substance that contains the same number of atoms in 12g of Carbon-12 $Avogadro's\ number\ -\ 6.02214076\times 10^{23}$

Elements - mass in amu of 1 atom of an element is the same as the mass in grams of 1 mole of atoms of the element

Mass of S (32.07 amu) is equal to the mass of 1 mol (6.02214076 \times 10²³) of S (32.07 amu)

Calculating Molecular Mass/Weight				
Compos-	Number of	Mass Number	Product	
ition	Atoms	(amu)	(amu)	
H ₂	2	1.008	2.02	
0	1	16.00	16.00	
			$\Sigma = 18.02$	

- -Determine the number of atoms of each element then multiply to their corresponding mass number
- -Get the summation of the products

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 3 of 7.

by Jerstellar via cheatography.com/204102/cs/43494/

Writing and Balancing Chem Eq

Law of Conservation of Mass - mass is neither created nor destroyed in a chemical reaction

Antoine Lavoisier - French chemist; proponent

Reactants - starting material in a chemical reaction

Product - substance formed in a chemical reaction

Reactants → Products

"to yield" or "to form" (→)

"to react with" or "to combine with" (+)

Examples

$$CH_4 + O_2 \rightarrow CO_2 + H_2O \Longrightarrow CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$AI + BaO \rightarrow Al_2O_3 + Ba \Longrightarrow 2AI + 3BaO \rightarrow Al_2O_3 + 3Ba$$

$$Cl_2 + KBr \rightarrow KCI + Br_2 \Longrightarrow Cl_2 + 2KBr \rightarrow 2KCI + Br_2$$

Types of Chemical Reactions

71		
Туре	Definition	Example
Combination/- Synthesis	two or more reactants combine to form a single product	$2Mg + O_2 \rightarrow \\ 2MgO$
Decomposition	one reactant breaks down into two or more products	CaCO₃ → CaO + CO₂
Single Displa- cement	one element is substituted for another element in a compound	K + NaCl → KCl + Na
Double Displa- cement/salt metathesis	two substances react by exchanging ions to produce two new molecules	AgNo ₃ + NaCl → AgCl + NaNo ₃

Module 4 - Mass Relationships in Chem Reactions

Stoichiometry - quantitative relationship between reactants and products in a chemical reaction

Stoichiometric coefficient - added before an element, ion, or

molecule to balance chemical reactions

Mole method using mole-mole factor:

2Na(s) + 2HCl(aq) → 2NaCl(aq) + H₂(g)

2 moles Na ≅ 2 moles NaCl; hence,

Calculating Amount of Product and Reactant

 $3Hg_2(g) + N_2(g) \rightarrow 2NH_3(g)$

How many moles of H_2 are needed to produce 26.5 moles of NH_3 ? 26.5 moles NH_3 x (3 moles H_2)/(2 moles NH_3) = 39.8 moles of H_2 How many moles of NH_3 will be produced if 33.7 moles of N_2 reacts completely with H_2

 $\frac{33.7 \text{ moles of N}_2 \text{ x}}{1 \text{ moles of NH}_3} \times (2 \text{ moles of NH}_3) \times (2 \text{ moles of NH}_3)$

-In using mole-mole factor, the arrangement of fractions is done in a way that there is cancellation of similar units

Calculating " " with Molar Mass

 $2\text{LiOH}(s) + \text{CO}_2(g) \rightarrow \text{Li}_2\text{CO}_3(s) + \text{H}_2\text{O}(l)$

How many grams of CO_2 can be absorbed by 236.1 g of LiOH? 236.1g LiOH x (1 mole of LiOH)/(23.95g LiOH) x (1 mole CO_2) /(2 moles LiOH) x (44.01g of CO_2)/ (1 mole CO_2) = 221.1g CO_2

-Determine the mass of each element and add each to the given compounds

(Li=6.941, O=15.999, H=1.008, C=12.011)

-Since the given number has 4 significant figures, the numbers also have 4 significant figures

Limiting and Excess Reagent

In chemical reactions, the amount of reactants isn't always stoichiometrically exact, so scientists use cheaper reactants (excess) Limiting Reagent - Reagent that is completely reacted or used up Excess Reagent - Reactant present with higher quantity than what is required to react in a limiting reagent

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 4 of 7.

by Jerstellar via cheatography.com/204102/cs/43494/

Example

 $3H_2 + 2N_2 \rightarrow 2NH_3$

Suppose 6 moles of H_2 was mixed with 4 moles of N_2 . To determine which is the limiting reagent, the amount of NH_3 must be computed given the moles of H_2 and N_2 and the mole-mole factor of the equation

Solution

 $\begin{aligned} & moles \ NH_3 = \# \ moles \ of \ H_2 \ X \ \frac{2 \ moles \ NH_3}{3 \ moles \ H_2} \\ & moles \ NH_3 = 6 \ moles \ of \ H_2 \ X \ \frac{2 \ moles \ NH_3}{3 \ moles \ H_2} \\ & moles \ NH_3 = 4 \ moles \ of \ N_2 \ X \ \frac{2 \ moles \ NH_3}{1 \ mole \ N_2} \\ & moles \ NH_3 = 4 \ moles \ of \ N_2 \ X \ \frac{2 \ moles \ NH_3}{1 \ mole \ N_2} \\ & moles \ NH_3 = 4 \ moles \ of \ N_2 \ X \ \frac{2 \ moles \ NH_3}{1 \ mole \ N_2} \\ & moles \ NH_3 = 8 \ moles \ nH_3 = 8 \ moles \end{aligned}$

- -Simplify the number of moles by multiplying each final no. of moles of reagent by the proportion of the initial number of moles and given reagent
- -The reagent with lesser number of moles of NH_3 is the limiting reagent and vise versa; in this case, H_2 is the limiting reagent and N_2 is the excess reagent

Calculate the excess

-To determine how much of 4 moles of N_2 is in excess, use molemole factor of N_2 and H_2

6 moles of H_2 x (1 mole N_2)/(3 moles H_2) = 2 moles N_2 in excess

-The number of moles of N_2 required to react with 6 moles of H_2 is only 2, thus, 6 moles of N_2 has an excess of 4 moles

6 moles of N_2 - 2 moles of N_2 in 6 moles of H_2 = 4 moles excess N_2

Limiting and Excess Reagent with Molar Mass

 $Mg_2Si + 4H_2O \rightarrow 2Mg(OH)_2 + SiH_4$

If we start with 50.0 g of each reactant, how much in grams SiH_4 can be formed?

 $50g \text{ Mg}_2\text{Si} \times (1 \text{ mol Mg}_2\text{Si})/(76.7 \text{ g Mg}_2\text{Si}) \times (1 \text{ mol SiH}_4)/(1 \text{ mol Mg}_2\text{Si}) \times (32.1 \text{ g SiH}_4)/(1 \text{ mol SiH}_4) = 20.9 \text{ SiH}_4$

 $50 \text{ g H}_2\text{O} \text{ x } (1 \text{ mole H}_2\text{O})/(\frac{18.0 \text{ g H}_2\text{O}}{2}) \text{ x } (\frac{1 \text{ mol SiH}_4}{4})/(4 \text{ mol H}_2\text{O}) \text{ x}$ (32.1 g SiH₄)/(\frac{1 \text{mol SiH}_4}{2}) = 22.3 g SiH₄

50g Mg₂Si = 20.9 SiH₄ (Limiting reactant)

50 g H₂O = 22.3 g SiH₄ (Excess reactant)

- -Divide the number of initial molar mass of compound by the final/given molar mass and multiply with the molar mass of required compound to convert
- -Determine how much of 50 g of H_2O is in excess by 50 g H_2O x (1 mol $Mg_2Si)/(4$ mol $H_2O)$ = 12.5 g Mg_2Si

50 g Mg₂Si - 12.5 g Mg₂Si excess in 50 g H₂O = **37.5 g excess Mg₂Si**

Theoretical and Percent Yield

Percent Yield - ratio of actual yield to the theoretical yield expressed as a percentage

Percent Yield = (Actual Yield)/(Theoretical Yield) x 100%

Theoretical Yield - maximum/expected amount of product produced from the given amount of reactant

Actual Yield - actual amount of product produced from the given amount of reactant (determined experimentally)

Calculating Theoretical and Percent Yield

In calculating theoretical yield, always use the limiting reactant. *from the previous example*

Mg₂Si + 4H₂O 2Mg(OH)₂ + SiH₄

If 19.87 g SiH₄ is formed, what is the percent yield of the reaction? 50g Mg₂Si = 20.9 SiH₄ (Limiting reactant) = Theoretical yield Percent Yield = (Actual Yield)/(Theoretical Yield) \times 100% = 19.87 g SiH₄/20.9 SiH₄ \times 100% = 94.89%

Percent error = 100% - 98.89% = 5.11%

Module 5 - Gases I

Pressure - amount of force exerted per unit area

Standard atmosphere (atm) - widely used unit for pressure; 1 atm = 760mmHg

Torr (or mmHg) - milliliter of mercury equal to 1 atmosphere; named after Italian scientist Evangelista Torricelli (invented barometer)

Pounds per square inch (psi) - amount of pressure in pounds that gas exerts in a container per square inch of unit area kilopascal (kPa) - equal to 1000 Pa, modern unit for pressure/default Conversion Factor:

1 atm = 760mmHg = 760 Torr = 101.3 kPa = 14.7 psi = 1k Pa = 1000 Pa

Gas Laws

Boyle's Volume is inversely proportional to its pressure at P_1V_1 Law a **constant temparature**; $\uparrow V \iff \downarrow P$ = P_2V_2

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 5 of 7.

by Jerstellar via cheatography.com/204102/cs/43494/

Gas Laws (cont)				
Charles' Law	Volume is directly proportional to its absolute temperature and constant pressure; $\uparrow V \iff \uparrow T$	$V_1/T_1 = V_2/T_2$		
Avogadro's Law	Volume is directly proportional to the number of moles contained in the volume at constant temper- ature and pressure ; $\uparrow V \iff \uparrow n$	$V_1/n_1 = V_2/n_2$		
Gay-Lu- ssac's Law/Ideal Gas Law	Sums up and combines Boyle's, Charles', and Avogadro's Laws	PV = nRT (where R or universal gas constant = 0.0821 atm.L/- mol.K)		

Gas Mixtures

Different gases can be present in a container and can be represented as n_1 (gas 1), n_2 (gas 2), or n_3 (gas 3), etc.; the total number of moles as n_{total}

The pressure exerted by the mixture can be interpreted as $P_{mixture} = (n_{total}RT)/V$

It can be simplified as $P_1 = (n_1RT)/V$; $P_2 = (n_2RT)/V$; $P_3 = (n_3RT)/V$ Pressures P_1 , P_2 , and P_3 are partial pressure of each gas Dalton's Law of Partial Pressure - pressure exerted by the mixture is the sum of the pressures exerted by each component Get the partial pressure of gas 1 by $P_1 = P_{mixture} X_1$ (wherein X_1 is the mole fraction of gas 1)

Module 6 - Gases II

Stoichiometric ratio - dictates the ratio of components to start the reaction

Standart Temperature and Pressure (STP) = 0° C (273 K) and pressure of 1 atm

Amount of gaseous products are determined using $n = (PV_{stp})/(RT)$ wherein V_{stp} is the volume of gases involved measured in STP in liters (L)

 $n = (PV_{stp})/(0.0821)(273 \text{ K}) = V_{stp}/22.4$

 $n = V_{stp}/22.4$

Gases are also measured in *Standard Ambient Temperature and Pressure (SATP)* which is more accurate than STP which is at 25°C (298 K) and 1 atm.

 $n = (PV_{satp})/(0.0821)(298 \text{ K}) = V_{satp}/24.5$

 $n = V_{\text{satp}}/24.5$

Temperature Conversion				
Celsius	\rightarrow	Kelvin	C + 273.15	
Celsius	\rightarrow	Farenheight	C (9/5) + 32	
Farenheight	\rightarrow	Kelvin	(F - 32)(5/9) + 273.15	
Farenheight	\rightarrow	Celsius	(F - 32)(5/9)	
Kelvin	\rightarrow	Celsius	K - 273.15	
Kelvin	\rightarrow	Farenheight	(K - 273.15)(9/5) + 32	

Kinetic Molecular Theory

- 1. Gases are very small molecules separated by expansive space between them
- 2. Force of attraction between particles is negligible
- 3. The molcules are in **constant motion** and move randomly in all directions
- 4. Sometimes particles **collide** with each other or with the walls of container
- 5. The collisions are **perfectly elastic**, hence, there is no change in momentum
- 6. The average kinetic energy is determined only by the absolute temparature of the gas

To determine the kinetic energy of gas particles, the root-meansquare velocity is used:

 $v_{rms} = \sqrt{(3RT/M)}$

where R = ideal gas constant, T = absolute temperature in K, M = molar mass in g/mol

To compare the velocities of gases with different molar masses at the same absolute temperature:

 $v_{rms1}/v_{rms2} = \sqrt{(M_2)}/\sqrt{(M_1)}$

where M_1 or M_2 = molar mass of gas 1 or 2

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 6 of 7.

by Jerstellar via cheatography.com/204102/cs/43494/

Kinetic Molecular Theory (cont)

number

This expression is also known as **Graham's Law of Diffusion** which states that the diffusion rate (rate at which the gas moves), is **inversely proportional** to the square root of its molar mass

YEY! you finished q1, I am so proud of you :)

Calculating Empirical Formula with Molar mass						
Given	Mass	Quotient	Quotient	Smallest Ratio		

-Divide the given percent composition to the mass number of each

(x/0.75)

- -Divide each quotient by the smallest number among them
- -Multiply the quotients by the smallest number that will make them whole

Calculating Empirical Formula with Molar mass					
Given	Mass number	Quotient	Quotient (x/0.75)	Smallest Ratio (y*2)	
28.03% Mg	24.305	1.15	1.53≈1.5	3	
21.6% Si	21.16	1.15	1.53≈1.5	3	
1.16% H	1.16	0.75	1	2	
49.21% O	49.21	3.08	4.1≈4	8	

- -Divide the given percent composition to the mass number of each element
- -Divide each quotient by the smallest number among them
- -Multiply the quotients by the smallest number that will make them whole

Calculating Empirical Formula with Molar mass					
Given	Mass number	Quotient	Quotient (x/0.75)	Smallest Ratio (y*2)	
28.03%	24.035	1.15	1.5	3	
1.6%	28.086	0.75	1	2	
1.16%	1.008	1.15	1.5	3	
49.21	15.999	3.08	4	8	

Answer = Mg₃Si₃H₂O₈

- -Divide the given percent composition to the mass number of each element
- -Divide each quotient by the smallest number among them
- -Multiply the quotients by the smallest number that will make them whole

C

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 22nd March, 2025. Page 7 of 7.