by Jerstellar via cheatography.com/204102/cs/43494/ ### Module 1 - Matter and its Properties Matter - has mass and occupies space. | _ | | | | | | | |---|--------------------|--|-----------------------------------|--|--|--| | 3 | 3 States of Matter | | | | | | | 5 | State | Definition | Examples | | | | | 5 | Solid | rigid; has a fixed shape and volume | ice cube,
diamond, iron
bar | | | | | L | _iquid | has a definite volume but takes the shape of its container | gasoline, water,
blood | | | | | (| Gas | has no fixed volume or shape; takes the shape of its container | air, helium,
oxygen | | | | ### Phase Changes of Matter Figure 1.1. Phase Changes of Matter | Elements and Compounds | | | | | | |------------------------|--|--|--|--|--| | Elements | cannot be broken down into other substances by chemical means | iron, aluminum, oxygen, and hydrogen | | | | | Compound | substances that have the same composition no matter where we find them; can be broken down into elements | Water (H20),
Salt (NaCl),
Ammonia
(NH3) | | | | | Physical and | Physical and Chemical Properties and Changes | | | | | |------------------------|---|--|--|--|--| | Physical
Properties | odor, color, volume, state (gas, liquid, or solid), density, melting point, boiling point | | | | | | Chemical
Properties | burning, digestion, fermentation, rusting, electrolysis | | | | | | Other Properties | | | | | |------------------|---|---|--|--| | Extensive | changes when the amount of material changes | mass, length, volume, shape | | | | Intrinsive | does not depend on the size of the material | temperature, odor, color, hardness, density | | | | Mixture and Pure Substances | | | | | | |--|--------------------------|---|--|--|--| | Mixture | has variable composition | | | | | | | Homogenous | also called a solution; does not vary in composition from one region to another | | | | | | Hetero-
genous | contains regions that have different properties from those of other regions | | | | | Pure always have the same composition; either elements Substance compounds | | | | | | By Jerstellar cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 1 of 7. by Jerstellar via cheatography.com/204102/cs/43494/ | Types of b | Types of bonds | | | | | | |------------|---|---|--|--|--|--| | Ionic | when one atom shifts or
transfers an electron to another
atom; metals + nonmetals | Na ⁺ (1A) and CΓ (7A)
creates a stable bond
(octet rule) | | | | | | Covalent | atoms share electrons; nonmetals | O^{2} -(6A) and 2 atoms of H^+ (1A) = H_2O | | | | | | Metallic | a metal shares an electron with an charged ions in electrons | nother metal; positively | | | | | | Module 2 - Isotopes | . Compounds, En | noirical Formula | |-----------------------|-----------------|------------------------| | IVIOGUIC Z - ISOTOPOS | , Compounds, Em | iipiiricai i oi iiiula | Atoms have a constant or fixed number of protons Atomic Number - gives the protons in the nucleus of an atom; represented as $\boldsymbol{\mathsf{Z}}$ Neutral Atom - number of protons is equal to the number of electrons Z = nuclear charge = number of protons = number of electrons in neutral form Mass Number - sum of the number of protons and neutrons; represented by $\boldsymbol{\mathsf{A}}$ An atom can be represented by the nuclear symbol ^AzE Nucleons - protons + neutrons ### John Dalton's Atomic Theory All atoms of an element have the same mass, although isotopes are atoms of the same element but has different numbers of protons Ex: All carbons atoms (Z=6) have 6 protons and electrons, but only 98.89% of naturally occuring carbon atoms have 6 neutrons (A=12) ### **Chemical Compounds** Radicals/Polyatomic lons - stable groups which form chemical bonds as an intact unit. The valence numbe is taken as one. If a molecule contains **more than one radical** (At least two unpaired electrons), the formula uses **parentheses**. Calcium Phosphate - $Ca_3(PO_4)_2$ | Some Polyatomic Ions | | | | | | |----------------------------|--|--------------------------|-------------------------------|-----------------------------|-----------------| | Monovalent (1 ⁻ | | Bivalent (2 ⁻ | | Trivalent (3 ⁻) | | | Ammonium | $\mathrm{NH_4}^+$ | Carbonate | CO₃ | Phosphate | PO ₄ | | Acetate | C ₂ H ₃ O ₂ | Chromate | CrO₄ | Borate | ВОз | | Chlorate | ClO₃ | Oxalate | C ₂ O ₄ | | | | Chlorite | CIO2 | Sulfate | SO₃ | | | | Bicarbonate | HCO₃ | Sulfite | SO ₂ | | | | Biculfate | HSO₄ | Peroxide | O ₂ | | | | Hydroxide | ОН | | | | | | Nitrate | NO₃ | | | | | | Nitrite | NO ₂ | | | | | | Diatomic Molecules | | | | | |--------------------|----------|--|--|--| | H ₂ | hydrogen | | | | | N_2 | nitrogen | | | | | F ₂ | fluorine | | | | | O ₂ | oxygen | | | | | 12 | iodine | | | | | Cl ₂ | chlorine | | | | | Br ₂ | bromine | | | | ### **Criss-Cross Method** - -Determine the charge or valence number of the elements - -Exchange their valence numbers - -Reducing by their gcf is possible By Jerstellar cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 2 of 7. by Jerstellar via cheatography.com/204102/cs/43494/ ### Calculating Empirical Formula Percentage Composition - amounts of the elements for a given amount of compound Empirical Formula - simpest formula of any compound (smallest ratio of moles); derived from mass analysis - Determine the given number of moles in each element - Divide each by the smallest number of moles given - Multiply each by the smallest number that will turn them into whole numbers. ### Example Zn_{0.21}P_{0.14}O_{0.56} Converting the fraction to whole numbers: 1. Divide each subscript by the smallest one, which in this case is 0.14: \[\frac{ZR_{0.21}P_{0.14}Q_{0.55}}{0.14} \frac{Q_{0.55}}{0.14} \] \[\frac{ZR_{0.21}P_{1.0}Q_{4.0}}{0.14} \] 2. Multiply through by the smallest integer that turns all subscripts into integers. We multiply by 2 to make the 1.5 (subscript of Zn) into an integer $Zn_{(1.5x2)}P_{(1.5x2)}O_{(4.0x2)}$ $Zn_{3}P_{2}O_{6}$ | Calculating Empirical Formula with Molar mass | | | | | | | |---|----------------|----------|-------------------|----------------------|--|--| | Given | Mass
number | Quotient | Quotient (x/0.75) | Smallest Ratio (y*2) | | | | 28.03%
Mg | 24.035 | 1.15 | 1.53≈1.5 | 3 | | | | 21.6% Si | 28.086 | 0.75 | 1 | 2 | | | | 1.16% H | 1.16 | 1.15 | 1.53≈1.5 | 3 | | | | 49.21% | 49.21 | 3.08 | 4.1≈4 | 8 | | | ### Answer = Mg₃Si₂H₃O₈ 0 - -Divide the given percent composition to the mass number of each element - -Divide each quotient by the smallest number among them - -Multiply the quotients by the smallest number that will make them whole ### For more examples: Chem Calculation Worksheet | Calculating Molecular Formula By Empirical Formula | | | | | | |--|----------------|-----------------------|-------------------------|--|--| | Empirical
Composition | Mass
number | Product (rounded off) | Product (emp* (mass/x)) | | | | Mg₃ | 24.305 | 73 | 6 | | | | Si ₂ | 28.086 | 56 | 4 | | | | H₃ | 1.008 | 3 | 6 | | | | O ₈ | 15.999 | 128 | 16 | | | | | | Σ = 260 | | | | Suppose the molar mass is 520.8; divide it by the summation (520.8/260 \approx 2). Multiply 2 by the empirical compostion of each element. Answer = Mg₆Si₄H₆O₁₆ - -Get the summation summation of the product of each empirical composition to their mass number - -Divide the summation from the molar mass - -Multiply the quotient to the empirical composition of each element ### Module 3 - Molar Mass, Chem Reactions, Eq Mole(mol) - SI unit for determining molar mass; amount of substance that contains the same number of atoms in 12g of Carbon-12 Avogadro's number - $6.02214076 \times 10^{23}$ Elements - mass in amu of 1 atom of an element is the same as the mass in grams of 1 mole of atoms of the element Mass of S (32.07 amu) is equal to the mass of 1 mol (6.02214076 \times 10²³) of S (32.07 amu) | Calculating Molecular Mass/Weight | | | | | | |-----------------------------------|--------------------|----------------------|------------------|--|--| | Compos-
ition | Number of
Atoms | Mass Number
(amu) | Product
(amu) | | | | H ₂ | 2 | 1.008 | 2.02 | | | | 0 | 1 | 16.00 | 16.00 | | | By **Jerstellar** cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 3 of 7. by Jerstellar via cheatography.com/204102/cs/43494/ ### Calculating Molecular Mass/Weight (cont) $\Sigma = 18.02$ -Determine the number of atoms of each element then multiply to their corresponding mass number -Get the summation of the products #### Writing and Balancing Chem Eq Law of Conservation of Mass - mass is neither created nor destroyed in a chemical reaction Antoine Lavoisier - French chemist; proponent Reactants - starting material in a chemical reaction Product - substance formed in a chemical reaction Reactants → Products "to yield" or "to form" (→) "to react with" or "to combine with" (+) #### **Examples** $$CH_4 + O_2 \rightarrow CO_2 + H_2O \Longrightarrow CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$ $$AI + BaO \rightarrow AI_2O_3 + Ba \Longrightarrow 2AI + 3BaO \rightarrow AI_2O_3 + 3Ba$$ $Cl_2 + KBr \rightarrow KCI + Br_2 \Longrightarrow Cl_2 + 2KBr \rightarrow 2KCI + Br_2$ ### **Types of Chemical Reactions** | Туре | Definition | Example | |-----------------------------|--|---------------------------------| | Combinati-
on/Synthesis | two or more reactants combine to form a single product | $2Mg + O_2 \rightarrow \\ 2MgO$ | | Decomp-
osition | one reactant breaks down into two or more products | CaCO₃ → CaO + CO₂ | | Single
Displa-
cement | one element is substituted for another element in a compound | K + NaCl →
KCl + Na | ### Types of Chemical Reactions (cont) ### Module 4 - Mass Relationships in Chem Reactions Stoichiometry - quantitative relationship between reactants and products in a chemical reaction Stoichiometric coefficient - added before an element, ion, or molecule to balance chemical reactions Mole method using mole-mole factor: 2Na(s) + 2HCl(aq) → 2NaCl(aq) + H₂(g) 2 moles Na ≅ 2 moles NaCl; hence, ### Calculating Amount of Product and Reactant $3Hg_2(g) + N_2(g) \rightarrow 2NH_3(g)$ How many moles of H_2 are needed to produce 26.5 moles of NH_3 ? 26.5 moles NH_3 x (3 moles H_2)/(2 moles NH_3) = 39.8 moles of H_2 How many moles of NH_3 will be produced if 33.7 moles of N_2 reacts completely with H_2 $\frac{33.7 \text{ moles of N}_2 \text{ x}}{1 \text{ moles of NH}_3} \times (2 \text{ moles of NH}_3) NH}_3)$ -In using mole-mole factor, the arrangement of fractions is done in a way that there is cancellation of similar units ### Calculating " " with Molar Mass $2\text{LiOH}(s) + \text{CO}_2(g) \rightarrow \text{Li}_2\text{CO}_3(s) + \text{H}_2\text{O}(l)$ How many grams of CO_2 can be absorbed by 236.1 g of LiOH? 236.1g LiOH x (1 mole of LiOH)/(23.95g LiOH) x (1 mole CO_2) /(2 moles LiOH) x (44.01g of CO_2)/ $\frac{1 \text{ mole } CO_2}{2}$ = 221.1g CO_2 -Determine the mass of each element and add each to the given compounds (Li=6.941, O=15.999, H=1.008, C=12.011) -Since the given number has 4 significant figures, the numbers also have 4 significant figures By **Jerstellar** cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 4 of 7. by Jerstellar via cheatography.com/204102/cs/43494/ ### Limiting and Excess Reagent In chemical reactions, the amount of reactants isn't always stoichiometrically exact, so scientists use cheaper reactants (excess) Limiting Reagent - Reagent that is completely reacted or used up Excess Reagent - Reactant present with higher quantity than what is required to react in a limiting reagent ### Example $3H_2 + 2N_2 \rightarrow 2NH_3$ Suppose 6 moles of H_2 was mixed with 4 moles of N_2 . To determine which is the limiting reagent, the amount of NH_3 must be computed given the moles of H_2 and N_2 and the mole-mole factor of the equation #### Solution $$\begin{aligned} moles \, NH_3 &= \# \, moles \, of \, H_2 \, X \, \frac{2 \, moles \, NH_3}{3 \, moles \, H_2} \\ moles \, NH_3 &= 6 \, moles \, of \, H_2 \, X \, \frac{2 \, moles \, NH_3}{3 \, moles \, H_2} \\ moles \, NH_3 &= 4 \, moles \\ moles \, NH_3 &= moles \, of \, N_2 \, X \, \frac{2 \, moles \, NH_3}{1 \, mole NH_2} \\ moles \, NH_3 &= 4 \, moles \, of \, N_2 \, X \, \frac{2 \, moles \, NH_3}{1 \, mole NH_3} \\ moles \, NH_3 &= 8 \, moles \, NH_3 \\ &= 8 \, moles \, NH_3 \\ \end{aligned}$$ - -Simplify the number of moles by multiplying each final no. of moles of reagent by the proportion of the initial number of moles and given reagent - -The reagent with lesser number of moles of NH_3 is the limiting reagent and vise versa; in this case, H_2 is the limiting reagent and N_2 is the excess reagent ### Calculate the excess - -To determine how much of 4 moles of N_2 is in excess, use molemole factor of N_2 and H_2 - 6 moles of H_2 x (1 mole N_2)/(3 moles H_2) = 2 moles N_2 in excess - -The number of moles of N_2 required to react with 6 moles of H_2 is only 2, thus, 6 moles of N_2 has an excess of 4 moles 6 moles of N_2 - 2 moles of N_2 in 6 moles of H_2 = 4 moles excess N_2 ### Limiting and Excess Reagent with Molar Mass $Mg_2Si + 4H_2O \rightarrow 2Mg(OH)_2 + SiH_4$ If we start with 50.0 g of each reactant, how much in grams SiH_4 can be formed? 50g Mg₂Si x (1 mol Mg₂Si)/(76.7 g Mg₂Si) x (1 mol SiH₄)/(1 mol $Mg_2Si) \times (32.1 \text{ g SiH}_4)/(\frac{1 \text{ mol SiH}_4}{}) = 20.9 \text{ SiH}_4$ $\overline{50~g~H_2O}$ x (1 mole H₂O)/(18.0 g H₂O) x (1 mol SiH₄)/(4 mol H₂O) x $(32.1 \text{ g SiH}_4)/(\frac{1 \text{ mol SiH}_4}{2}) = 22.3 \text{ g SiH}_4$ 50g Mg₂Si = 20.9 SiH₄ (Limiting reactant) 50 g H₂O = 22.3 g SiH₄ (Excess reactant) - -Divide the number of initial molar mass of compound by the final/given molar mass and multiply with the molar mass of required compound to convert - -Determine how much of 50 g of H_2O is in excess by 50 g H_2O x (1 mol $Mg_2Si)/(4$ mol $H_2O)$ = 12.5 g Mg_2Si 50 g Mg₂Si - 12.5 g Mg₂Si excess in 50 g H₂O = 37.5 g excess Mg₂Si ### Theoretical and Percent Yield Percent Yield - ratio of actual yield to the theoretical yield expressed as a percentage Percent Yield = (Actual Yield)/(Theoretical Yield) x 100% Theoretical Yield - maximum/expected amount of product produced from the given amount of reactant Actual Yield - actual amount of product produced from the given amount of reactant (determined experimentally) ### Calculating Theoretical and Percent Yield In calculating theoretical yield, always use the limiting reactant. *from the previous example* $Mg_2Si + 4H_2O 2Mg(OH)_2 + SiH_4$ If 19.87 g SiH $_4$ is formed, what is the percent yield of the reaction? 50g Mg $_2$ Si = 20.9 SiH $_4$ (Limiting reactant) = Theoretical yield Percent Yield = (Actual Yield)/(Theoretical Yield) x 100% = 19.87 g SiH₄/20.9 SiH₄ x 100% = 94.89% Percent error = 100% - 98.89% = 5.11% By **Jerstellar** cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 5 of 7. by Jerstellar via cheatography.com/204102/cs/43494/ ### Module 5 - Gases I Pressure - amount of force exerted per unit area Standard atmosphere (atm) - widely used unit for pressure; 1 atm = 760mmHg Torr (or mmHg) - milliliter of mercury equal to 1 atmosphere; named after Italian scientist Evangelista Torricelli (invented barometer) Pounds per square inch (psi) - amount of pressure in pounds that gas exerts in a container per square inch of unit area kilopascal (kPa) - equal to 1000 Pa, modern unit for pressure/default Conversion Factor: 1 atm = 760mmHg = 760 Torr = 101.3 kPa = 14.7 psi = 1k Pa = 1000 Pa | Gas Laws | | | |------------|---|--------------------------------| | Boyle's | Volume is inversely proportional to its pressure | P_1V_1 | | Law | at a constant temparature; $\uparrow V \iff \downarrow P$ | = | | | | P_2V_2 | | Charles' | Volume is directly proportional to its absolute | V_1/T_1 | | Law | temperature and constant pressure ; $\uparrow V \iff \uparrow T$ | = | | | | V_2/T_2 | | Avogadro's | Volume is directly proportional to the number of | V ₁ /n ₁ | | Law | moles contained in the volume at constant | = | | | temperature and pressure; $\uparrow V \iff \uparrow n$ | V_2/n_2 | | Gas Laws | (cont) | |----------|---------| | Gas Laws | (COIIL) | Gay-Lu- Sums up and combines PV = nRT (where R or ssac's Boyle's, Charles', and universal gas constant = Law/Ideal Avogadro's Laws 0.0821 atm.L/mol.K) Gas Law #### **Gas Mixtures** Different gases can be present in a container and can be represented as n_1 (gas 1), n_2 (gas 2), or n_3 (gas 3), etc.; the total number of moles as n_{total} The pressure exerted by the mixture can be interpreted as P_{mixture} = (ntotalRT)/V It can be simplified as $P_1 = (n_1RT)/V$; $P_2 = (n_2RT)/V$; $P_3 = (n_3RT)/V$ Pressures P_1 , P_2 , and P_3 are partial pressure of each gas Dalton's Law of Partial Pressure - pressure exerted by the mixture is the sum of the pressures exerted by each component Get the partial pressure of gas 1 by $P_1 = P_{mixture} X_1$ (wherein X_1 is the mole fraction of gas 1) #### Module 6 - Gases II Stoichiometric ratio - dictates the ratio of components to start the reaction Standart Temperature and Pressure (STP) = 0° C (273 K) and pressure of 1 atm Amount of gaseous products are determined using $n = (PV_{stp})/(RT)$ wherein V_{stp} is the volume of gases involved measured in STP in liters (L) $n = (PV_{stp})/(0.0821)(273 \text{ K}) = V_{stp}/22.4$ $n = V_{stp}/22.4$ Gases are also measured in *Standard Ambient Temperature and Pressure (SATP)* which is more accurate than STP which is at 25°C (298 K) and 1 atm. $n = (PV_{satp})/(0.0821)(298 \text{ K}) = V_{satp}/24.5$ $n = V_{\text{satp}}/24.5$ By **Jerstellar** cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 6 of 7. by Jerstellar via cheatography.com/204102/cs/43494/ | Temperature Conversion | | | | | |------------------------|---------------|-------------|------------------------|--| | Celsius | \rightarrow | Kelvin | C + 273.15 | | | Celsius | \rightarrow | Farenheight | C (9/5) + 32 | | | Farenheight | \rightarrow | Kelvin | (F - 32)(5/9) + 273.15 | | | Farenheight | \rightarrow | Celsius | (F - 32)(5/9) | | | Kelvin | \rightarrow | Celsius | K - 273.15 | | | Kelvin | \rightarrow | Farenheight | (K - 273.15)(9/5) + 32 | | ### **Kinetic Molecular Theory** - 1. Gases are very small molecules separated by expansive space between them - 2. Force of attraction between particles is negligible - 3. The molcules are in **constant motion** and move randomly in all directions - 4. Sometimes particles **collide** with each other or with the walls of container - 5. The collisions are **perfectly elastic**, hence, there is no change in momentum - 6. The average kinetic energy is determined only by the absolute temparature of the gas To determine the kinetic energy of gas particles, the root-meansquare velocity is used: #### $v_{rms} = \sqrt{(3RT/M)}$ where R = ideal gas constant, T = absolute temperature in K, M = molar mass in g/mol To compare the velocities of gases with different molar masses at the same absolute temperature: ### $V_{rms1}/V_{rms2} = \sqrt{(M_2)}/\sqrt{(M_1)}$ where M_1 or M_2 = molar mass of gas 1 or 2 This expression is also known as **Graham's Law of Diffusion** which states that the diffusion rate (rate at which the gas moves), is **inversely proportional** to the square root of its molar mass ## YEY! you finished q1, I am so proud of you :) | Calculating Empirical Formula with Molar mass | | | | | |---|--------|----------|----------|----------------| | Given | Mass | Quotient | Quotient | Smallest Ratio | | | number | | (x/0.75) | (y*2) | - -Divide the given percent composition to the mass number of each element - -Divide each quotient by the smallest number among them - -Multiply the quotients by the smallest number that will make them whole | Calculating Empirical Formula with Molar mass | | | | | | |---|----------------|----------|-------------------|----------------------|--| | Given | Mass
number | Quotient | Quotient (x/0.75) | Smallest Ratio (y*2) | | | 28.03%
Mg | 24.305 | 1.15 | 1.53≈1.5 | 3 | | | 21.6% Si | 21.16 | 1.15 | 1.53≈1.5 | 3 | | | 1.16% H | 1.16 | 0.75 | 1 | 2 | | | 49.21%
O | 49.21 | 3.08 | 4.1≈4 | 8 | | - -Divide the given percent composition to the mass number of each element - -Divide each quotient by the smallest number among them - -Multiply the quotients by the smallest number that will make them whole | Calculating Empirical Formula with Molar mass | | | | | |---|----------------|----------|-------------------|----------------------| | Given | Mass
number | Quotient | Quotient (x/0.75) | Smallest Ratio (y*2) | | 28.03% | 24.035 | 1.15 | 1.5 | 3 | | 1.6% | 28.086 | 0.75 | 1 | 2 | | 1.16% | 1.008 | 1.15 | 1.5 | 3 | | 49.21 | 15.999 | 3.08 | 4 | 8 | Answer = Mg₃Si₃H₂O₈ - -Divide the given percent composition to the mass number of each element - -Divide each quotient by the smallest number among them - -Multiply the quotients by the smallest number that will make them whole By **Jerstellar** cheatography.com/jerstellar/ Not published yet. Last updated 28th July, 2024. Page 7 of 7.