

by Jerstellar via cheatography.com/204102/cs/43494/

Module 1 - Matter and its Properties

Matter - has mass and occupies space.

	3 States	3 States of Matter			
Ī	State	Definition	Examples		
	Solid	rigid; has a fixed shape and volume	ice cube, diamond, iron bar		
	Liquid	has a definite volume but takes the shape of its container	gasoline, water, blood		
	Gas	has no fixed volume or shape; takes the shape of its container	air, helium, oxygen		

Phase Changes of Matter

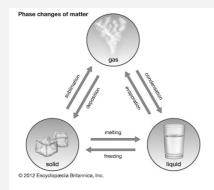


Figure 1.1. Phase Changes of Matter

Elements and Compounds Elements cannot be broken down into other

elements

substances by chemical means
substances that have the same
composition no matter where we find
them; can be broken down into

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes

Physical odor, color, volume, state (gas, liquid, or solid),
Properties density, melting point, boiling point

Chemical burning, digestion, fermentation, rusting, electrolysis
Properties

Other Properties

Extensive	changes when the amount	mass, length, volume,
	of material changes	shape
Intrinsive	does not depend on the	temperature, odor, color,
	size of the material	hardness, density

Mixture and Pure Substances

Ī	Mixture	has variable co	mposition
		Homogenous	also called a solution; does not vary in composition from one region to another
		Hetero- genous	contains regions that have different properties from those of other regions
	Pure Substance	always have th compounds	e same composition; either elements or

Types of bonds

Ionic	when one atom shifts or	Na ⁺ (1A) and CΓ (7A)
	transfers an electron to another	creates a stable bond
	atom; metals + nonmetals	(octet rule)
Covalent	atoms share electrons;	O ²⁻ (6A) and 2 atoms
	nonmetals	of $H^{+}(1A) = H_{2}O$

Compound

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 17th July, 2024. Page 1 of 6.

iron,

aluminum, oxygen, and hydrogen

Water (H20),

Salt (NaCl),

Ammonia

(NH3)

by Jerstellar via cheatography.com/204102/cs/43494/

Types of bonds (cont)

Metallic a metal shares an electron with another metal; positively charged ions in electrons

Module 2 - Isotopes, Compounds, Empirical Formula

Atoms have a constant or fixed number of protons

Atomic Number - gives the protons in the nucleus of an atom; represented as $\ensuremath{\mathbf{Z}}$

Neutral Atom - number of protons is equal to the number of electrons Z = nuclear charge = number of protons = number of electrons in neutral form

Mass Number - sum of the number of protons and neutrons; represented by $\boldsymbol{\mathsf{A}}$

An atom can be represented by the nuclear symbol ^AzE Nucleons - protons + neutrons

John Dalton's Atomic Theory

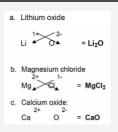
All atoms of an element have the same mass, although isotopes are atoms of the same element but has different numbers of protons Ex: All carbons atoms (Z=6) have 6 protons and electrons, but only 98.89% of naturally occuring carbon atoms have 6 neutrons (A=12)

Chemical Compounds

Radicals/Polyatomic lons - stable groups which form chemical bonds as an intact unit.

The valence numbe is taken as one.

If a molecule contains **more than one radical** (At least two unpaired electrons), the formula uses **parentheses**. Calcium Phosphate - $Ca_3(PO_4)_2$


Some P	olvato	mic lor	าร
	ory aco.		

Monovalent (1 ⁻		Bivalent (2 ⁻	Trivalent (3 ⁻))
Ammonium	NH ₄ ⁺	Carbonate	CO₃	Phosphate	PO ₄
Acetate	C ₂ H ₃ O ₂	Chromate	CrO ₄	Borate	ВОз
Chlorate	ClO₃	Oxalate	C ₂ O ₄		
Chlorite	ClO ₂	Sulfate	SO₃		

Some Polyatomic Ions (cont)				
Bicarbonate	HCO₃	Sulfite	SO ₂	
Biculfate	HSO₄	Peroxide	O ₂	
Hydroxide	ОН			
Nitrate	NO₃			
Nitrite	NO ₂			

Diatomic Molecules				
H ₂	hydrogen			
N ₂	nitrogen			
F ₂	fluorine			
O ₂	oxygen			
2	iodine			
Cl ₂	chlorine			
Br ₂	bromine			

Criss-Cross Method

- -Determine the charge or valence number of the elements
- -Exchange their valence numbers
- -Reducing by their gcf is possible

Calculating Empirical Formula

Percentage Composition - amounts of the elements for a given amount of compound

Empirical Formula - simpest formula of any compound (smallest ratio of moles); derived from mass analysis

- Determine the given number of moles in each element
- Divide each by the smallest number of moles given
- Multiply each by the smallest number that will turn them into whole numbers.

By Jerstellar cheatography.com/jerstellar/

Not published yet. Last updated 17th July, 2024. Page 2 of 6.

by Jerstellar via cheatography.com/204102/cs/43494/

Example

Converting the fraction to whole numbers:

1. Divide each subscript by the smallest one, which in this case is 0.14:

\[\frac{Z_{R021}P_{211}Q_{255}}{211} \frac{1}{611} \frac{1}{611}

2. Multiply through by the smallest integer that turns all subscripts into integers. We multiply by 2 to make the 1.5 (subscript of Zn) into an integer

 $Zn_{(1.5x2)}P_{(1.0x2)}O_{(4.0x2)}$ $Zn_3P_2O_8$

Calculating Empirical Formula with Molar mass					
Given	Mass number	Quotient	Quotient (x/0.75)	Smallest Ratio (y*2)	
28.03% Mg	24.035	1.15	1.53≈1.5	3	
21.6% Si	28.086	0.75	1	2	
1.16% H	1.16	1.15	1.53≈1.5	3	
49.21% O	49.21	3.08	4.1≈4	8	

Answer = Mg₃Si₂H₃O₈

- -Divide the given percent composition to the mass number of each element
- -Divide each quotient by the smallest number among them
- -Multiply the quotients by the smallest number that will make them whole

For more examples:

Chem Calculation Worksheet

Calculating Molecular Formula By Empirical Formula				
Empirical	Mass	Product	Product (emp*	
Composition	number	(rounded off)	(mass/x))	
Mg₃	24.305	73	6	
Si ₂	28.086	56	4	
Нз	1.008	3	6	
O ₈	15.999	128	16	
		Σ = 260		

Calculating Molecular Formula By Empirical Formula (cont)

Suppose the molar mass is 520.8; divide it by the summation (520.8/260 \approx 2). Multiply 2 by the empirical compostion of each element. Answer = Mg₆Si₄H₆O₁₆

- -Get the summation summation of the product of each empirical composition to their mass number
- -Divide the summation from the molar mass
- -Multiply the quotient to the empirical composition of each element

Module 3 - Molar Mass, Chem Reactions, Eq.

Mole(mol) - SI unit for determining molar mass; amount of substance that contains the same number of atoms in 12g of Carbon-12 $Avogadro's\ number\ -\ 6.02214076\times 10^{23}$

Elements - mass in amu of 1 atom of an element is the same as the mass in grams of 1 mole of atoms of the element

Mass of S (32.07 amu) is equal to the mass of 1 mol (6.02214076 \times 10²³) of S (32.07 amu)

Calculating Molecular Mass/Weight			
Compos-	Number of	Mass Number	Product
ition	Atoms	(amu)	(amu)
H ₂	2	1.008	2.02
0	1	16.00	16.00
			$\Sigma = 18.02$

- -Determine the number of atoms of each element then multiply to their corresponding mass number
- -Get the summation of the products

Writing and Balancing Chem Eq

Law of Conservation of Mass - mass is neither created nor destroyed in a chemical reaction

Antoine Lavoisier - French chemist; proponent

Reactants - starting material in a chemical reaction

Product - substance formed in a chemical reaction

Reactants → Products

"to yield" or "to form" (→)

"to react with" or "to combine with" (+)

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 17th July, 2024. Page 3 of 6.

by Jerstellar via cheatography.com/204102/cs/43494/

Examples

 $CH_4 + O_2 \rightarrow CO_2 + H_2O \Longrightarrow CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $AI + BaO \rightarrow AI_2O_3 + Ba \Longrightarrow 2AI + 3BaO \rightarrow AI_2O_3 + 3BaO$

 $\text{Cl}_2 + \text{KBr} \rightarrow \text{KCl} + \text{Br}_2 \Longrightarrow \text{Cl}_2 + 2\text{KBr} \rightarrow 2\text{KCl} + \text{Br}_2$

Types of Chemical Reactions				
Туре	Definition	Example		
Combination/- Synthesis	two or more reactants combine to form a single product	$2Mg + O_2 \rightarrow \\ 2MgO$		
Decomposition	one reactant breaks down into two or more products	CaCO₃ → CaO + CO₂		
Single Displa- cement	one element is substituted for another element in a compound	K + NaCl → KCl + Na		
Double Displa- cement/salt metathesis	two substances react by exchanging ions to produce two new molecules	AgNo ₃ + NaCl → AgCl + NaNo ₃		

Module 4 - Mass Relationships in Chem Reactions

Stoichiometry - quantitative relationship between reactants and products in a chemical reaction

Stoichiometric coefficient - added before an element, ion, or molecule to balance chemical reactions

Mole method using mole-mole factor:

 $2Na(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H₂(g)$

2 moles Na ≅ 2 moles NaCl; hence,

Calculating Amount of Product and Reactant

 $3Hg_2(g) + N_2(g) \rightarrow 2NH_3(g)$

How many moles of H_2 are needed to produce 26.5 moles of NH_3 ? 26.5 moles NH_3 x (3 moles H_2)/(2 moles NH_3) = 39.8 moles of H_2 How many moles of NH_3 will be produced if 33.7 moles of N_2 reacts completely with H_2

 $\frac{33.7 \text{ moles of N}_2 \text{ x}}{1 \text{ moles of NH}_3} \times (2 \text{ moles of NH}_3) \times (1 \text{ mole of N}_2) = 67.4 \text{ moles of NH}_3$

-In using mole-mole factor, the arrangement of fractions is done in a way that there is cancellation of similar units

Calculating " " with Molar Mass

 $2LiOH(s) + CO_2(g) \rightarrow Li_2CO_3(s) + H_2O(l)$

How many grams of CO_2 can be absorbed by 236.1 g of LiOH? 236.1g LiOH x (1 mole of LiOH)/(23.95g LiOH) x (1 mole CO_2) /(2 moles LiOH) x (44.01g of CO_2)/ (1 mole CO_2) = 221.1g CO_2

-Determine the mass of each element and add each to the given compounds

(Li=6.941, O=15.999, H=1.008, C=12.011)

-Since the given number has 4 significant figures, the numbers also have 4 significant figures

Limiting and Excess Reagent

In chemical reactions, the amount of reactants isn't always stoich-iometrically exact, so scientists use cheaper reactants (excess)

Limiting Reagent - Reagent that is completely reacted or used up

Excess Reagent - Reactant present with higher quantity than what is required to react in a limiting reagent

Example

 $3H_2 + 2N_2 \rightarrow 2NH_3$

Suppose 6 moles of H_2 was mixed with 4 moles of N_2 . To determine which is the limiting reagent, the amount of NH_3 must be computed given the moles of H_2 and N_2 and the mole-mole factor of the equation

Solution

$$\begin{split} & moles \, NH_3 = \# \, moles \, of \, H_2 \, X \, \frac{2 \, \, moles \, NH_3}{3 \, \, moles \, H_2} \\ & moles \, NH_3 = 6 \, moles \, of \, H_2 \, X \, \frac{2 \, \, moles \, NH_3}{3 \, \, moles \, H_2} \\ & moles \, NH_3 = 4 \, moles \\ & moles \, NH_3 = moles \, of \, N_2 \, X \, \frac{2 \, moles \, NH_3}{1 \, \, moles \, NH_3} \\ & moles \, NH_3 = 4 \, mofes \, of \, N_2 \, X \, \frac{2 \, moles \, NH_3}{1 \, \, moles \, NH_3} \\ & moles \, NH_3 = 8 \, moles \\ \end{split}$$

- -Simplify the number of moles by multiplying each final no. of moles of reagent by the proportion of the initial number of moles and given reagent
- -The reagent with lesser number of moles of NH_3 is the limiting reagent and vise versa; in this case, H_2 is the limiting reagent and N_2 is the excess reagent

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 17th July, 2024. Page 4 of 6.

by Jerstellar via cheatography.com/204102/cs/43494/

Calculate the excess

-To determine how much of 4 moles of $N_{\rm 2}$ is in excess, use molemole factor of $N_{\rm 2}$ and $H_{\rm 2}$

6 moles of H_2 x (1 mole N_2)/(3 moles H_2) = 2 moles N_2 in excess

-The number of moles of N_2 required to react with 6 moles of H_2 is only 2, thus, 6 moles of N_2 has an excess of 4 moles

6 moles of N2 - 2 moles of N2 in 6 moles of H2 = 4 moles excess N2

Limiting and Excess Reagent with Molar Mass

 $Mg_2Si + 4H_2O \rightarrow 2Mg(OH)_2 + SiH_4$

If we start with 50.0 g of each reactant, how much in grams SiH_4 can be formed?

 $50g \text{ Mg}_2\text{Si} \times (1 \text{ mol Mg}_2\text{Si})/(76.7 \text{ g Mg}_2\text{Si}) \times (1 \text{ mol SiH}_4)/(1 \text{ mol Mg}_2\text{Si}) \times (32.1 \text{ g SiH}_4)/(1 \text{ mol SiH}_4) = 20.9 \text{ SiH}_4$

 $50 \text{ g H}_2\text{O} \text{ x } (1 \text{ mole H}_2\text{O})/(\frac{18.0 \text{ g H}_2\text{O}}{2}) \text{ x } (\frac{1 \text{ mol SiH}_4}{4})/(4 \text{ mol H}_2\text{O}) \text{ x} (32.1 \text{ g SiH}_4)/(\frac{1 \text{ mol SiH}_4}{4}) = 22.3 \text{ g SiH}_4$

50g Mg₂Si = 20.9 SiH₄ (Limiting reactant)

50 g H₂O = 22.3 g SiH₄ (Excess reactant)

-Divide the number of initial molar mass of compound by the final/given molar mass and multiply with the molar mass of required compound to convert

-Determine how much of 50 g of H_2O is in excess by 50 g H_2O x (1 mol $Mg_2Si)/(4$ mol $H_2O)$ = 12.5 g Mg_2Si

50 g Mg₂Si - 12.5 g Mg₂Si *excess in 50 g H₂O* = **37.5 g excess Mg₂Si**

Theoretical and Percent Yield

Percent Yield - ratio of actual yield to the theoretical yield expressed as a percentage

Percent Yield = (Actual Yield)/(Theoretical Yield) x 100%

Theoretical Yield - maximum/expected amount of product produced from the given amount of reactant

Actual Yield - actual amount of product produced from the given amount of reactant (determined experimentally)

Calculating Theoretical and Percent Yield

In calculating theoretical yield, always use the limiting reactant. *from the previous example*

Mg₂Si + 4H₂O 2Mg(OH)₂ + SiH₄

If 19.87 g SiH₄ is formed, what is the percent yield of the reaction? 50g Mg₂Si = 20.9 SiH₄ (Limiting reactant) = Theoretical yield Percent Yield = (Actual Yield)/(Theoretical Yield) \times 100%

= 19.87 g SiH₄/20.9 SiH₄ x 100% = **94.89%**

Calculating Theoretical and Percent Yield (cont)

Percent error = 100% - 98.89% = 5.11%

Module 5 - Gases I

Pressure - amount of force exerted per unit area

Standard atmosphere (atm) - widely used unit for pressure; 1 atm = 760mmHq

Torr (or mmHg) - milliliter of mercury equal to 1 atmosphere; named after Italian scientist Evangelista Torricelli (invented barometer)
Pounds per square inch (psi) - amount of pressure in pounds that gas exerts in a container per square inch of unit area kilopascal (kPa) - equal to 1000 Pa, modern unit for pressure/default Conversion Factor:

1 atm = 760mmHg = 760 Torr = 101.3 kPa = 14.7 psi = 1k Pa = 1000 Pa

Gas Laws		
Boyle's Law	Volume is inversely proportional to its pressure at a constant temparature; $\uparrow V \Longleftrightarrow \downarrow P$	P_1V_1 = P_2V_2
Charles' Law	Volume is directly proportional to its absolute temperature and constant pressure ; $\uparrow V \iff \uparrow T$	V_1/T_1 = V_2/T_2
Avogadro's Law	Volume is directly proportional to the number of moles contained in the volume at constant temperature and pressure; $\uparrow V \iff \uparrow n$	V_1/n_1 = V_2/n_2

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 17th July, 2024. Page 5 of 6.

by Jerstellar via cheatography.com/204102/cs/43494/

Gas Laws (cont)

Gay-Lu- Sums up and combines PV = nRT (where R or ssac's Boyle's, Charles', and universal gas constant = Law/Ideal Avogadro's Laws 0.0821 atm.L/mol.K)

Gas Law

Gas Mixtures

Different gases can be present in a container and can be represented as n_1 (gas 1), n_2 (gas 2), or n_3 (gas 3), etc.; the total number of moles as n_{total}

The pressure exerted by the mixture can be interpreted as P_{mixture} = (n_{total}RT)/V

It can be simplified as $P_1 = (n_1RT)/V$; $P_2 = (n_2RT)/V$; $P_3 = (n_3RT)/V$ Pressures P_1 , P_2 , and P_3 are partial pressure of each gas Dalton's Law of Partial Pressure - pressure exerted by the mixture is the sum of the pressures exerted by each component Get the partial pressure of gas 1 by $P_1 = P_{mixture} X_1$ (wherein X_1 is the mole fraction of gas 1)

Module 6 - Gases II

Stoichiometric ratio - dictates the ratio of components to start the reaction

Standart Temperature and Pressure (STP) = 0° C (273 K) and pressure of 1 atm

Amount of gaseous products are determined using $n = (PV_{stp})/(RT)$ wherein V_{stp} is the volume of gases involved measured in STP in liters (L)

 $n = (PV_{stp})/(0.0821)(273 \text{ K}) = V_{stp}/22.4$

 $n = V_{stp}/22.4$

Gases are also measured in *Standard Ambient Temperature and Pressure (SATP)* which is more accurate than STP which is at 25°C (298 K) and 1 atm.

 $n = (PV_{satp})/(0.0821)(298 \text{ K}) = V_{satp}/24.5$

 $n = V_{satp}/24.5$

Temperature Conversion Celsius Kelvin C + 273.15Celsius Farenheight C(9/5) + 32Farenheight Kelvin (F - 32)(5/9) + 273.15Farenheight Celsius (F - 32)(5/9)K - 273.15 Kelvin Celsius

Temperature Conversion (cont)

Kelvin \rightarrow Farenheight (K - 273.15)(9/5) + 32

Kinetic Molecular Theory

- Gases are very small molecules separated by expansive space
 between them.
- 2. Force of attraction between particles is negligible
- 3. The molcules are in **constant motion** and move randomly in all directions
- 4. Sometimes particles **collide** with each other or with the walls of container
- 5. The collisions are **perfectly elastic**, hence, there is no change in momentum
- 6. The average kinetic energy is determined only by the absolute temparature of the gas

To determine the kinetic energy of gas particles, the root-meansquare velocity is used:

 $v_{rms} = \sqrt{(3RT/M)}$

where R = ideal gas constant, T = absolute temperature in K, M = molar mass in g/mol

To compare the velocities of gases with different molar masses at the same absolute temperature:

 $V_{rms1}/V_{rms2} = \sqrt{(M_2)}/\sqrt{(M_1)}$

where M₁ or M₂ = molar mass of gas 1 or 2

This expression is also known as **Graham's Law of Diffusion** which states that the diffusion rate (rate at which the gas moves), is **inversely proportional** to the square root of its molar mass

YEY! you finished q1, I am so proud of you :)

By **Jerstellar** cheatography.com/jerstellar/

Not published yet. Last updated 17th July, 2024. Page 6 of 6.