
442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Basic Syntax

null [] return True if list is empty

'H' `el ​‐
em` " ​Hel ​‐
lo"

return True if H is in the
string

head

[1,2,3]

return 1

tail

[1,2,3]

return [2,3]

last

[1,2,3]

return 3

init

[1,2,3]

return [1,2]

:t return the type

fst (5,2) return 5

snd (5,2) return 2

1:2:3:[] same as [1,2,3]

length [] give length of list

reverse

[]

reverse the list

[] !! n gives the nth element

filter

test []

return everything that
passes the test

[] ++ [] list concat ​enation

[] : [] list concat ​enation

drop n [] delete the first n element
from list

take n [] make a new list containing
just the first N element

splitAt n

[]

split list into two lists at nth
position

zip [a..]

[0...]

combine tow list into tuples
[(a,0]..]

map

function

[[]

apply a function to all list
elements

Termin ​ology

Polymo ​‐
rphic
Types

Families of types. For
example, (forall a)[a] is the
family of types consisting of,
for every type a, the type of
lists of a. Lists of integers (e.g.
[1,2,3]), lists of characters
(['a', ​'b' ​,'c']), even lists of lists of
integers, etc., are all members
of this family.

Type
Variable

Lower case, can be of any
type. e.g. fst::(​a ​, ​b ​) ​->a

Typeclass A sort of interface that defines
some behavior. Basic type
classes: Read, Show, Ord, Eq,
Enum, Num. Num includes Int,
Integer, Float, Double.

Higher ​-
or ​dered
Functions

A function that takes other
functions as arguments or
returns a function as result.
Ex: foldl, folder ​,zi ​pWith, flip.

Module A collection of related
functions, types and typecl ​‐
asses

Termin ​ology (cont)

Refere ​
ntial
Transp ​
arency

An expression is called refere ​‐
ntially transp ​arent if it can be
replaced with its corres ​ponding
value without changing the
program's behavior.

 subs ​tit ​uting equals for equals,
different from other programing
langua ​ges

Type Signatures

In type signature, specific (String) and
general (a,b) types can be mixed and
matched.

conca ​t3: ​:St ​rin ​g-
> ​Str ​ing ​->S ​tri ​‐
ng- ​>St ​ring

concat3 x y z

= x++y++z

const :: a-> ​b->a const x y = x

allEqual :: (Eq

a) => a -> a ->

a -> Bool

allEqual x y

z = x == y &&

y == z

(.):: ​(b- ​>c) ​->(​a-
> ​b)- ​>a- ​>c

f.g = \x-> f

(g x)

 (\x-> ​10+x)5

Lambda function, lead with \, then
arguments, then ->, then the comput ​ation

Recursive Descent Parser

-- our parsers generally are of

type Parser [Ptree]

data Ptree = VAR String | ID

String | FCN String [Ptree]

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 1 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Recursive Descent Parser (cont)

 ​ ​ ​ ​der ​iving (Show, Eq, Read)
data Presult a = FAIL | OK a

String deriving (Show, Eq, Read)

type Parser a = String ->

Presult a

-- As before, we use &> and |>

as AND / OR combin ​ators on
parsers

expr = variable |> fcnCall |>

identifier

fcnCall = buildCall . (ident ​‐
ifier &> skip " ​(" &> arguments
&> skip " ​)")
arguments = expr &> argTail |>

empty

argTail = skip " ​," &> expr &>
argTail |> empty

identifier input = beginsWith ID

Data.C ​har.is ​Lower isTailChar
(dropblank input)

variable input = beginsWith VAR

Data.C ​har.is ​Upper isTailChar
(dropblank input)

empty = OK [] -- empty string

parser always succeeds

------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​----
--

-- UTILITY ROUTINES

-- Parse a string but don't save

it as a parse tree

skip :: String -> Parser [a]

skip want input =

 ​ ​ ​ let found = take (length
want) input

 ​ ​ ​ ​ ​ ​ ​ ​rem ​ainder = dropblank
(drop (length want) input)

 ​ ​ ​ ​ in
 ​ ​ ​ ​ ​ ​ ​ if want == found then OK
[] remainder

 ​ ​ ​ ​ ​ ​ ​ else FAIL

Recursive Descent Parser (cont)

-- Build a singleton list of a

function call parse tree from a

list with

-- an identifier followed by

list of arguments

buildCall :: Presult [Ptree] ->

Presult [Ptree]

buildCall FAIL = FAIL

buildCall (OK [] _) = FAIL

buildCall (OK (ID fcn : args)

remainder) = OK [FCN fcn args]

remainder

-- Build a singleton list of a

parse tree given the kind of

tree we want

-- and the kinds of head and

tail characters we want

beginsWith :: (String -> Ptree)

-> (Char -> Bool) -> (Char ->

Bool) -> Parser [Ptree]

beginsWith _ _ _ " ​" = FAIL
beginsWith builder isHead isTail

(c:cs)

 ​ ​ ​ | isHead c = let tail =
Data.L ​ist.ta ​keWhile isTail cs
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ in OK [builder
(c:tail)] (dropblank (drop

(length tail) cs))

 ​ ​ ​ | otherwise = FAIL
-- Remove spaces (and tabs and

newlines) from head of string.

--

dropblank :: String -> String

dropblank = Data.L ​ist.dr ​opWhile
Data.C ​har.is ​Space
-- kind of character that makes

up 2nd - end character of an id

or var

--

Recursive Descent Parser (cont)

isTailChar :: Char -> Bool

isTailChar c = Data.C ​har.is ​Alp ​‐
haNum c || c == '_'

------ ​--- ​--- ​--- ​--- ​--- ​--- ​-------
-- Concat ​enation and altern ​ation
operators on parsers

-- (|>) is an OR/Alt ​ern ​ation
operator for parsers.

--

infixr 2 |>

(|>) :: Parser a -> Parser a ->

Parser a

(p1 |> p2) input =

 ​ ​ ​ case p1 input of
 ​ ​ ​ ​ ​ ​ ​ m1 @ (OK _ _) -> m1 --
if p1 succeeds, just return what

it did

 ​ ​ ​ ​ ​ ​ ​ FAIL -> p2 input
-- (& ​>) is an AND/Co ​nca ​ten ​ation
operator for parsers

infixr 3 &>

(& ​>) :: Parser [a] -> Parser [a]
-> Parser [a]

(p1 &> p2) input =

 ​ ​ ​ case p1 input of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL -- p1
fails? we fail

 ​ ​ ​ ​ ​ ​ ​ OK ptrees1 remain1 ->
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ case p2 remain1 of -
- run p2 on remaining input

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL --
p2 fails? we fail

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ OK ptrees2
remain2 -> -- both succeeded

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ OK (ptrees1
++ ptrees2) remain2

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 2 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Data Types

Haskell uses various data types, all of them
starts by a capital letter:
-Int: Integer number with fixed precision
-Int ​eger: Integer number with virtually no
limits
-Flo ​at: Floating number
-Bool: Boolean. Takes two values: True or
False.
-Char: Character. Any character in the code
is placed between quotes (').
-Str ​ing: Strings (In fact, a list of Chars).

Properties of Haskell

Pure No side effects in functions
and expres ​sions

 No assignment operators such
as ++ and =+

 I/O is an exception

 Promotes refere ​ntial transp ​‐
arency

 Once x is assigned to a value,
the value stays

Functional Use recursion instead of
iteration

 Allows operations on functions

Lazy Don't do an operation unless
you need the result.

Tree

data Tree a = Leaf a | Branch a

(Tree a) (Tree a) deriving (Eq,

Show)

treeEq :: (Eq a) => Tree a ->

Tree a -> Bool

treeEq (Leaf x) (Leaf y) = x ==

y

treeEq (Branch x1 l1 r1) (Branch

x2 l2 r2) = x1 == x2 && treeEq

l1 l2 && treeEq r1 r2

treeEq _ _ = False

treeShow
treeShow :: Show a => Tree a ->

[Char]

treeShow (Leaf x) = " ​(Leaf " ++
show x ++ " ​)"
treeShow (Branch x left right)=

" ​(Branch " ++ show x ++ " "++
treeShow left ++ " "++ treeShow

right ++ " ​)"
Preorder via standard recursion
preorder :: Tree a -> [a]

preorder (Leaf x) = [x]

preorder (Branch x left right)=

x : preorder left ++ preorder

right

Tail-r ​ecu ​rsive traversal
preorder' :: Tree a -> [a] ->

[a]

preorder' (Leaf x) xs = x : xs

preorder' (Branch r left right)

xs= r : preorder' left

(preorder' right xs)

Function Syntax

addFour w x y z =

 ​let a = w + x
 ​ ​ ​ ​ b = y + a
 ​in z + b
------ ​--- ​--- ​--- ​--- ​-----

Function Syntax (cont)

addFour w x y z =

 ​ z + b
 ​w ​here
 ​ a = w + x
 ​ b = y + a
------ ​--- ​--- ​--- ​--- ​-----
fib n

 ​ | n < 2 = 1
 ​ | othe ​rwise = fib (n - 1) +
fib (n - 2)

------ ​--- ​--- ​--- ​--- ​-----
fib n =

 ​ ​c ​ase n of
 ​ ​ ​ 0 -> 1
 ​ ​ ​ 1 -> 1
------ ​--- ​--- ​--- ​--- ​-----
fib n =

 ​ ​if n < 2
 ​ ​ ​t ​hen 1
 ​ ​ ​e ​lse fib (n - 1) + fib (n -
2)

------ ​--- ​--- ​--- ​-------
nameReturn :: IO String

nameReturn = do putStr "What is

your name? "

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ name <- getLine
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ p ​utS ​trLn ("Pl ​‐
eased to meet you, " ++ name ++

" ​!")
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​return full

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 3 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Regex

. Any character except new line (\n)

\w Word * 0 or more

\S Not white space + 1 or more

\s White space ? 0 or 1

\W Not word {3} Exactly 3

\d Digit {3,} 3 or more

\D Not digit {3,5} 3, 4 or 5

\b Word boundary ^ Beginning
of String

\B Not word
boundary

$ End of
String

[^
]

matches
characters NOT
in bracket

[] matches
characters
in brackets

| Either Or () Group

ε Empty string containing no characters

^ [. $ { * (\ +) | ? < >
Matech ​ara ​cters need to be escaped

Currying

Curr ​ying is the process of transf ​orming a
function that takes multiple arguments in a
tuple as its argument, into a function that
takes just a single argument and returns
another function which accepts further
arguments, one by one, that the original
function would receive in the rest of that
tuple.

Currying (cont)

from g :: (a, b) -> c to f :: a ->
(b -> c)

f :: a -> (b -> c) is the same as f
:: a -> b -> c

g (x,y) = x + y is an uncurried
function, has the type g :: Num a =>
(a, a) -> a

h x y = x + y is a curried addition, has
the type h :: Num c => c -> c -> c

curry g can convert it to a curried
function

Fold List

Foldl takes a binary operation, a starting
value, and the list to fold

foldl (-) 0 [3,5,8] => (((0 - 3)
- 5) - 8) => -16

foldl and foldr is under the type class
Foldable

foldl :: Foldable t => (b -> a -

> b) -> b -> t a -> b

foldr :: Foldable t => (a -> b -

> b) -> b -> t a -> b

elem' y ys = foldl (\acc x -> if

x == y then True else acc) False

ys

Notes

head_ ​repeats n x = (take n x) ==
(take n (drop n x))

returns True if the first n elements of x
equals the second n elements of x.If n ≤ 0,
return True.
------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​-----
swap_ends [] = []

swap_ends [y] = [y]

Notes (cont)

swap_ends x = last x : (reverse

(drop 1 (reverse (drop 1 x))))++

[head x]

Define a function swap_ends that takes a
list and returns the same list but with the
first and last elements swapped.
------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​-----
iterate via standard recursion
iterate1 n f

| n <= 0 = id

| otherwise = f . (iterate1 (n-

1) f)

iterate via foldl
iterate2 n f = foldl (.) id [f |

i <- [1..n]]

------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​-----
f1a :: (b, a) -> (a, b)

f1a = \(x, y) -> (y, x)

f1b :: a -> [a] -> [[a]]

f1b = \x y -> [[x], y]

f1c :: a -> a -> [a] -> [[a]]

f1c = \x y z -> [x : z, y : z]

f1d :: (a -> Bool) -> [a] -> Int

f1d f = length . (filter f)

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

++ is only used for list concat ​ena ​tion,
whereas : is used for joining element with
lists
Num class does not support /, Fractional
does

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 4 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Pattern Matching

(x:xs) head x and tail xs

(x:3:xs) list where 2nd element is
3

myData a _

c

ignore one of the
component

data Pattern a = P a | POr

(Pattern a) (Pattern a)| PAnd

(Pattern a) (Pattern a) deriving

Show

match pattern [] = (False, [])

match (P x) (y : ys) = if x == y

then (True, ys) else (False, y :

ys)

match (POr pat1 pat2) xs =case

match pat1 xs of

(True, leftover) -> (True,

leftover)

(False, _) -> match pat2 xs

match (PAnd pat1 pat2) xs =case

match pat1 xs of

(False, _) -> (False, xs)

(True, leftover) ->case match

pat2 leftover of

(False, _) -> (False, xs)

(True, leftover2) -> (True,

leftov ​er2)

Regex Examples

Natural numbers with no leading

zeros except just 0

0 | [1-9] \d*

Floating point numbers w/o

leading zeros

(0 | [1-9] \d*.\d* | . \d+)?([eE][+-]?[0-9]+))

Hex numbers allowing leading

zeros

0x[0-9a-fA-F]+

Strings with an even #a's or

number ofb's divisible by 2

(b*ab*a)*b*|(a*ba*ba*b)*a*

Match regular expres ​sions using backtr ​‐
acking

data RegExp = Rnull

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Rend
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Rany
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Rch Char
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Ror RegExp RegExp
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Rand RegExp RegExp
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Ropt RegExp
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ | Rstar RegExp
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​der ​iving (Eq, Show)
data Mresult = FAIL | OK String

String deriving (Eq, Show)

match :: RegExp -> String ->

Mresult

match Rnull str = OK " ​" str
match Rend " ​" = OK " ​" " ​"
match Rend str = FAIL

match Rany " ​" = FAIL
match Rany (c : cs) = OK [c] cs

match (Rch ch1) " ​" = FAIL
match (Rch ch1) (str @ (ch2 :

left))

 ​ ​ ​ | ch1 == ch2 = OK [ch1] left
 ​ ​ ​ | otherwise = FAIL
match (Ror exp1 exp2) str =

 ​ ​ ​ case match exp1 str of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> match exp2 str
 ​ ​ ​ ​ ​ ​ ​ ​result1 @ (OK match1
remain1) ->

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ case match exp2 str
of

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ FAIL -> result1
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​result2 @ (OK
match2 remain2) ->

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if length
match1 >= length match2

Match regular expres ​sions using backtr ​‐
acking (cont)

match (Rand exp1 exp2) str =

 ​ ​ ​ case match exp1 str of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL
 ​ ​ ​ ​ ​ ​ ​ ok @ (OK match1 remain1)
->

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​extend match1 (match
exp2 remain1)

match (Ropt exp) str = match

(Ror exp Rnull) str

match (Rstar exp) str =

 ​ ​ ​ case match exp str of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> OK " ​" str
 ​ ​ ​ ​ ​ ​ ​ OK match1 remain1 ->
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if match1 == " ​" then
OK " ​" str
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ else
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​extend match1
(match (Ror (Rstar exp) Rnull)

remain1)

extend match1 (OK match2

remain2) = OK (match1 ++ match2)

remain2

extend match1 FAIL = FAIL

-- mkAnd string = the exp that

matches each character of the

string in sequence.

--

mkAnd (c : " ​") = Rch c
mkAnd (c : cs) = Rand (Rch c)

(mkAnd cs)

--

mkOr (c : " ​") = Rch c
mkOr (c : cs) = Ror (Rch c)

(mkOr cs)

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 5 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Lecture 11

data ParseT = STR String | LIST

[ParseT] deriving (Show, Eq,

Read)

data PResult = FAIL | OK

[ParseT] String deriving (Show,

Eq, Read)

type Parser = String -> PResult

type TreeBu ​ilder = [ParseT] ->
ParseT -- LIST, for these trees

-- Note use of &> as AND and |>

as OR

list = parse LIST (skip " ​(" &>
list &> sublist &> skip " ​)"
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​|> skip " ​[" &>
list &> sublist &> skip " ​]"
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​|> identi ​fier)
sublist = (skip " ​,") &> list &>
sublist |> empty

identifier = literal " ​x"
empty = OK [] -- empty string

parser always succeeds

-- expr = expr &> literal " ​+" &>
identifier |> empty

------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--
- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--
- ​-------
-- UTILITY ROUTINES

-- Parse a string and make it a

parse tree

literal :: String -> Parser

literal want input =

 ​ ​ ​ let found = take (length
want) input

 ​ ​ ​ ​ ​ ​ ​ ​rem ​ainder = dropblank
(drop (length want) input)

 ​ ​ ​ ​ in
 ​ ​ ​ ​ ​ ​ ​ if want == found then OK
[STR want] remainder

 ​ ​ ​ ​ ​ ​ ​ else FAIL

Lecture 11 (cont)

-- Parse a string but don't save

it as a parse tree

skip want input =

 ​ ​ ​ case literal want input of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL
 ​ ​ ​ ​ ​ ​ ​ OK _ remain -> OK []
remain

-- Remove spaces from head of

string

dropblank = Data.L ​ist.dr ​opWhile
Data.C ​har.is ​Space
------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​----

-- Concat ​enation and altern ​ation
operators on parsers

-- (|>) is an OR/Alt ​ern ​ation
operator for parsers.

--

infixr 2 |>

(|>) :: Parser -> Parser ->

Parser

(p1 |> p2) input =

 ​ ​ ​ case p1 input of
 ​ ​ ​ ​ ​ ​ ​ m1 @ (OK _ _) -> m1 --
if p1 succeeds, just return what

it did

 ​ ​ ​ ​ ​ ​ ​ FAIL -> p2 input
-- (& ​>) is an AND/Co ​nca ​ten ​ation
operator for parsers

--

infixr 3 &>

(& ​>) :: Parser -> Parser ->
Parser

(p1 &> p2) input =

 ​ ​ ​ case p1 input of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL -- p1
fails? we fail

Lecture 11 (cont)

 ​ ​ ​ ​ ​ ​ ​ OK ptrees1 remain1 ->
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ case p2 remain1 of -
- run p2 on remaining input

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL --
p2 fails? we fail

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ OK ptrees2
remain2 -> -- both succeeded

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ OK (ptrees1
++ ptrees2) remain2

------ ​--- ​--- ​--- ​--- ​--- ​--- ​--- ​--
- ​--- ​--- ​-------
-- Building a parse tree from

list of found parse trees

parse :: TreeBu ​ilder -> Parser -
> Parser

parse builder parser input =

 ​ ​ ​ case parser input of
 ​ ​ ​ ​ ​ ​ ​ FAIL -> FAIL
 ​ ​ ​ ​ ​ ​ ​ (OK [] remain) -> OK []
remain

 ​ ​ ​ ​ ​ ​ ​ (OK trees remain) -> OK
[builder trees] remain

More Examples

(Find out whether a list is a

palindrome)

isPali ​ndr ​ome'' :: (Eq a) => [a]
-> Bool

isPali ​ndr ​ome'' xs = foldl (\acc
(a,b) -> if a == b then acc else

False) True input where input =

zip xs (reverse xs)

(Eliminate consec ​utive
duplicates of list elements)

compress :: Eq a => [a] -> [a]

compress = map head . group

(Count the leaves of a binary

tree)

countL ​eaves Empty = 0
countL ​eaves (Branch _ Empty
Empty) = 1

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 6 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

More Examples (cont)

countL ​eaves (Branch _ left right) = countL ​eaves
left+ countL ​eaves right
(User- ​Defined Polymo ​rphic Lists)
(a) Define the function foldList which acts on

user-d ​efined lists just as foldr acts on native
lists.

foldList :: (a -> b -> b) -> b -> List a -> b

foldList f init Nil = init

foldList f init (Cons x xs) = f x (foldList f init

xs)

(b) Define the function sumList which adds up the

entries in an argument of type (List Int).

sumList :: (List Int) -> Int

sumList = foldList (+) 0

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 7 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

	442 Cheat Sheet - Page 1
	Basic Syntax
	Termin­ology
	Type Signatures
	Recursive Descent Parser

	442 Cheat Sheet - Page 2
	442 Cheat Sheet - Page 3
	Data Types
	Tree
	Properties of Haskell
	Function Syntax

	442 Cheat Sheet - Page 4
	Regex
	Fold List
	Currying
	Notes

	442 Cheat Sheet - Page 5
	Pattern Matching
	Match regular expres­sions using backtr­acking
	Regex Examples

	442 Cheat Sheet - Page 6
	Lecture 11
	More Examples

	442 Cheat Sheet - Page 7

