Cheatography

Basic Syntax
null T[]

TH h el_
em”~ "Hel-

lo"

head
[1,2,3]
tail
[1,2,3]

last
2,31
init
[1,2,3]
=

fst (5,2)
snd (5,2)
1:2:3:[]
length []

reverse

filter

test []

(1 ++ [l

map
function

[

By jenwwnewnw

by via
Terminology
return True if list is empty Polymo- Families of types. For
return True if H is in the rphic example, (forall a)[a] is the
string Types family of types consisting of,
for every type a, the type of
lists of a. Lists of integers (e.g.
return 1 [1,2,3]), lists of characters
(['a','b','c'"]), even lists of lists of
return [2,3] integers, etc., are all members
of this family.
return 3 Type Lower case, can be of any
Variable type. e.g. fst::(a,b)->a
return [1,2] Typeclass A sort of interface that defines
some behavior. Basic type
classes: Read, Show, Ord, Eq,
return the type Enum, Num. Num includes Int,
return 5 Integer, Float, Double.
return 2 Higher- A function that takes other
same as [1,2,3] ordered functions as arguments or
. . Functions returns a function as result.
give length of list
Ex: foldl, folder,zipWith, flip.
reverse the list .
Module A collection of related

gives the nth element

return everything that
passes the test

list concatenation
list concatenation

delete the first n element
from list

make a new list containing
just the first N element

split list into two lists at nth
position
combine tow list into tuples

[(a,0]..]

apply a function to all list
elements

functions, types and typecl-
asses

Not published yet.

Last updated 22nd April, 2021.

Page 1 of 7.

Terminology (cont)

Refere An expression is called refere-
ntial ntially transparent if it can be
Transp replaced with its corresponding
arency value without changing the
program's behavior.
substituting equals for equals,
different from other programing
languages
Type Signatures

In type signature, specific (String) and
general (a,b) types can be mixed and
matched.

concat3::String- concat3 x y z
>String->Stri— = xt++tyt++z

ng->String

const :: a->b->a const x y = X
allEqual :: (Eg allEqual x y
a) =>a ->a -> Z = X == y &&
a -> Bool Yy == zZ
(.)::(b->c)->(a- f.g = \x-> £
>b) ->a->c (g x)
(\x->10+x)5

Lambda function, lead with \, then
arguments, then ->, then the computation

Recursive Descent Parser

- our parsers generally are of
type Parser [Ptree]
data Ptree = VAR String | ID
FCN String

String | [Ptree]

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

Cheatography

by

Recursive Descent Parser (cont)

deriving (Show, Eg, Read)
data Presult a = FAIL | OK a
String deriving (Show, Eg, Read)
type Parser a = String ->
Presult a
-- As before, we use &> and |>
as AND / OR combinators on
parsers

expr = variable |> fcnCall |>

identifier
fcnCall = buildCall (ident-
ifier &> skip " (" &> arguments

&> skip ")")

arguments = expr &> argTail |>
empty

argTail = skip "," &> expr &>
argTail |> empty

identifier input = beginsWith ID
Data.Char.isLower isTailChar
(dropblank input)

variable input = beginsWith VAR
Data.Char.isUpper isTailChar
(dropblank input)

empty = OK [] -- empty string
parser always succeeds

-- UTILITY ROUTINES
-- Parse a string but don't save
it as a parse tree
skip :: String -> Parser [a]
skip want input =
let found = take (length

want) input

remainder = dropblank
(drop (length want) input)

in

if want == found then OK

[] remainder

else FAIL

By jenwwnewnw

via

Recursive Descent Parser (cont)

-- Build a singleton list of a
function call parse tree from a
list with
-- an identifier followed by
list of arguments
buildCall Presult [Ptree] ->
Presult [Ptree]
buildCall FAIL = FAIL
buildcall (OK [] _) = FAIL
buildCall (OK (ID fcn : args)
remainder) = OK [FCN fcn args]
remainder
-- Build a singleton list of a
parse tree given the kind of
tree we want
-- and the kinds of head and
tail characters we want
beginsWith (String -> Ptree)
-> (Char -> Bool) -> (Char ->
Bool) -> Parser [Ptree]
beginsWith _ _ _ "" = FAIL
beginsWith builder isHead isTail
(c:cs)

| isHead c¢ = let tail =
Data.List.takeWhile isTail cs

in OK [builder

(c:tail)] (dropblank (drop
(length tail) cs))

| otherwise = FAIL
-- Remove spaces (and tabs and
newlines) from head of string.

dropblank String -> String
dropblank = Data.List.dropWhile
Data.Char.isSpace

-- kind of character that makes
up 2nd - end character of an id

or var

Not published yet.
Last updated 22nd April, 2021.
Page 2 of 7.

Recursive Descent Parser (cont)

isTailChar :: Char -> Bool
isTailChar ¢ = Data.Char.isAlp-
haNum c || == 1_!
-- Concatenation and alternation
operators on parsers
-- (|>») is an OR/Alternation
operator for parsers.
infixr 2 |>
(|>) :: Parser a -> Parser a ->
Parser a
(pl |> p2) input =
case pl input of
ml @ (OK _ _) ->ml --
if pl succeeds, just return what
it did
FAIL -> p2 input
-- (&>) 1is an AND/Concatenation
operator for parsers
infixr 3 &>
(&>) :: Parser [a] -> Parser [a]
-> Parser [al
(pl &> p2) input =
case pl input of
FAIL -> FAIL -- pl
fails? we fail
OK ptreesl remainl ->
case p2 remainl of -
- run p2 on remaining input
FAIL -> FAIL --
p2 fails? we fail
OK ptrees?2
remain2 -> -- both succeeded
OK (ptreesl

++ ptrees2) remain2

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

Cheatography

by

Data Types

Haskell uses various data types, all of them
starts by a capital letter:

-Int: Integer number with fixed precision
-Integer: Integer number with virtually no
limits

-Float: Floating number

-Bool: Boolean. Takes two values: True or
False.

-Char: Character. Any character in the code
is placed between quotes (').

-String: Strings (In fact, a list of Chars).

Properties of Haskell

Pure No side effects in functions
and expressions

No assignment operators such
as ++ and =+

/O is an exception
Promotes referential transp-
arency

Once x is assigned to a value,
the value stays

Functional Use recursion instead of
iteration
Allows operations on functions
Lazy Don't do an operation unless

you need the result.

By jenwwnewnw

via

Tree

data Tree a = Leaf a | Branch a

(Tree a) (Tree a) deriving (Eq,
Show)
treeEq (Eg a) => Tree a ->

Tree a -> Bool

treeEq (Leaf x) (Leaf y) = x ==
Y

treeEq (Branch x1 11 rl) (Branch
x2 12 r2) = x1 == x2 && treeEq
11 12 && treeEq rl r2

treeEq _ _ = False

treeShow

treeShow Show a => Tree a ->
[Char]

treeShow (Leaf x) = "(Leaf " ++

show x ++ ")"

treeShow (Branch x left right)=

"(Branch " ++ show x ++ " "++
treeShow left ++ " "++ treeShow
rlght +4+ m)m

Preorder via standard recursion
preorder Tree a -> [al]
preorder (Leaf x) = [x]
preorder (Branch x left right)=
X : preorder left ++ preorder
right

Tail-recursive traversal

preorder' Tree a -> [a] ->
[a]
preorder' (Leaf x) xs = x : Xs

preorder' (Branch r left right)
xs= r : preorder' left

(preorder' right xs)

Function Syntax

addFour w x vy z =
let a = w + x
b=y + a
in z + b

Not published yet.
Last updated 22nd April, 2021.
Page 3 of 7.

Function Syntax (cont)

addFour w X y z =
z + b

where

case n of

0 ->1

if n < 2
then 1
else fib (n - 1) + fib (n -

nameReturn IO String
nameReturn = do putStr "What is
your name? "
name <- getLine
putStrln ("P1l-
eased to meet you, " ++ name ++
npm)

return full

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

Cheatography

by

Regex

Any character except new line (\n)

\w Word * 0 or more

\S Not white space + 1 or more

\s White space ? Oori

\W Not word {3} Exactly 3

\d Digit {3} 3 or more

\D Not digit (35} 3,40r5

\b Word boundary A Beginning

of String

\B Not word $ End of
boundary String

[matches [1 matches

] characters NOT characters
in bracket in brackets

| Either Or () Group

€ Empty string containing no characters

MLS{T(V) 17

Matecharacters need to be escaped

Currying

Currying is the process of transforming a
function that takes multiple arguments in a
tuple as its argument, into a function that
takes just a single argument and returns
another function which accepts further
arguments, one by one, that the original
function would receive in the rest of that
tuple.

By jenwwnewnw

via

Currying (cont)

fromg :: (a, b) -> ctof :: a ->
(b -> c)
f :: a -> (b -> ¢c) isthesameas £

t:a ->b ->c

g (x,y) = x + y isanuncurried
function, has the type g :: Num a =>
(a, a) -> a

h x y = x + yisacurried addition, has

thetypeh :: Num ¢ => ¢ -> ¢ -> ¢

curry g can convert it to a curried

function

Fold List

Foldl takes a binary operation, a starting
value, and the list to fold

foldl (-) 0 [3,5,8] => (((0 - 3)
- 5) - 8)=>-16

foldl and foldr is under the type class
Foldable

foldl :: Foldable t => (b -> a -
>Db) ->b ->t a ->b

foldr :: Foldable t => (a -> b -

>b) ->b ->t a ->b

elem' vy ys = foldl (\acc x -> if

x == y then True else acc) False
Vs

Notes

head_repeats n x = (take n x) ==

(take n (drop n x))

returns True if the first n elements of x
equals the second n elements of x.If n < 0,
return True.

swap_ends [] = []

swap_ends [y] = [y]

Not published yet.
Last updated 22nd April, 2021.
Page 4 of 7.

Notes (cont)

swap_ends X = last x : (reverse
(drop 1 (reverse (drop 1 x))))++
[head x]

Define a function swap_ends that takes a

list and returns the same list but with the

first and last elements swapped.

iterate via standard recursion
iteratel n f

| n <= 0 = id

| otherwise = f (iteratel (n-
1) f)

iterate via foldl

iterate2 n £ = foldl (.) id [f |
i <- [1..n]]
fla :: (b, a) -> (a, b)

fla = \(x, y) -> (v, x)

flb :: a -> [a] -> [[all

flb = \x y -> [[x], vl

flc :: a -> a -> [a] -> [[a]]

fle = \xyz -> [x: 2z, v : z]

fld :: (a -> Bool) -> [a] -> Int
f1d £ = length . (filter f)

(:) :: a -> [a] -> [a]

(#+) :: [a] -> [a] -> [al

++is only used for list concatenation,
whereas : is used for joining element with
lists

Num class does not support /, Fractional
does

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

Cheatography

by

Pattern Matching

(x:x8) head x and tail xs

(x:3:x8) list where 2nd element is
3

myData a _ ignore one of the

c component

data Pattern a = P a | POr
(Pattern a) (Pattern a)| PAnd
(Pattern a) (Pattern a) deriving

Show

match pattern [] = (False, [])
match (P x) (y ys) = if x == y
then (True, ys) else (False, y
ys)

match (POr patl pat2) xs =case
match patl xs of

(True, leftover) -> (True,
leftover)

(False, _) -> match pat2 xs
match (PAnd patl pat2) xs =case
match patl xs of

(False, _) -> (False, xs)
(True, leftover) ->case match
pat2 leftover of

(False, _) -> (False, xs)

(True, leftover2) -> (True,

leftover2)

Regex Examples

Natural numbers with no leading
zeros except just 0

0| [1-9]\d*

Floating point numbers w/o
leading zeros

(0| [1-9]\d*.\d* | . \d+)?([eE][+-]?[0-9]+))
Hex numbers allowing leading
zZeros

0x[0-9a-fA-F]+

Strings with an even #a's or
number ofb's divisible by 2

(b*ab*a)*b*|(a*ba*ba*b)*a*

By jenwwnewnw

via

Match regular expressions using backtr-
acking

data RegExp = Rnull
| Rend
| Rany
| Rch Char
| Ror RegExp RegExp
| Rand RegExp RegExp
| Ropt RegExp
| Rstar RegExp
deriving (Eg, Show)
data Mresult = FAIL | OK String

String deriving (Eg, Show)

match RegExp -> String ->
Mresult

match Rnull str = OK "" str
match Rend "" = QK "m nv

match Rend str = FAIL

match Rany "" = FAIL
match Rany (c : cs) = OK [c] cs
match (Rch chl) "" = FAIL

match (Rch chl) (str @ (ch2
left))
| chl == ch2 = OK [chl] left
| otherwise = FAIL
match (Ror expl exp2) str =
case match expl str of
FAIL -> match exp2 str
resultl @ (OK matchl
remainl) ->

case match exp2 str

of
FAIL -> resultl
result2 @ (OK
match2 remain2) ->

if length

matchl >= length match2

Not published yet.
Last updated 22nd April, 2021.
Page 5 of 7.

Match regular expressions using backtr-
acking (cont)

match (Rand expl exp2) str =
case match expl str of
FAIL -> FAIL

ok @ (OK matchl remainl)

extend matchl (match
exp2 remainl)
match (Ropt exp) str = match
(Ror exp Rnull) str
match (Rstar exp) str =
case match exp str of
FAIL -> OK "" gstr
OK matchl remainl ->
if matchl == "" then
OK "" str
else
extend matchl
(match (Ror (Rstar exp) Rnull)
remainl)
extend matchl (OK match2
remain2) = OK (matchl ++ match2)
remain?
extend matchl FAIL = FAIL
-- mkAnd string = the exp that
matches each character of the
string in sequence.

mkAnd (¢ : "") = Rch ¢

mkAnd (c : cs) Rand (Rch ¢)

(mkAnd cs)

mkOr (c "") = Rch ¢

mkOr (c : cs) = Ror (Rch c)
(mkOr cs)

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

Cheatography

by

Lecture 11

data ParseT = STR String | LIST
[ParseT] deriving (Show, Eg,
Read)
data PResult = FAIL | OK
[ParseT] String deriving (Show,
Eg, Read)
type Parser = String -> PResult
type TreeBuilder = [ParseT] ->
ParseT -- LIST, for these trees
-- Note use of &> as AND and |>
as OR
list = parse LIST (skip " (" &>
list &> sublist &> skip ")"

|> skip "[" &>
list &> sublist &> skip "]"

|> identifier)
sublist = (skip ",") &> list &>
sublist |> empty
identifier = literal "x"
empty = OK [] -- empty string
parser always succeeds
-- expr = expr &> literal "+" &>
identifier |> empty

-- UTILITY ROUTINES
-- Parse a string and make it a
parse tree
literal String -> Parser
literal want input =
let found = take (length
want) input
remainder = dropblank
(drop (length want) input)
in
if want == found then OK
[STR want] remainder

else FAIL

By jenwwnewnw

via

Lecture 11 (cont)

-- Parse a string but don't save
it as a parse tree
skip want input =
case literal want input of
FAIL -> FAIL
OK _ remain -> OK []
remain
-- Remove spaces from head of
string
dropblank = Data.List.dropWhile

Data.Char.isSpace

-- Concatenation and alternation
operators on parsers
-- (|>) is an OR/Alternation
operator for parsers.
infixr 2 |>
(|>) :: Parser -> Parser ->
Parser
(pl |> p2) input =
case pl input of

ml @ (OK _ _) -> ml --
if pl succeeds, just return what
it did

FAIL -> p2 input
-- (&>) 1is an AND/Concatenation
operator for parsers
infixr 3 &>
(&>) :: Parser -> Parser ->
Parser
(pl &> p2) input =

case pl input of
FAIL -> FAIL -- pl

fails? we fail

Not published yet.
Last updated 22nd April, 2021.
Page 6 of 7.

Lecture 11 (cont)

OK ptreesl remainl ->
case p2 remainl of -
- run p2 on remaining input
FAIL -> FAIL --
p2 fails? we fail
OK ptrees2
remain2 -> -- both succeeded
OK (ptreesl

++ ptrees2) remain2

-- Building a parse tree from
list of found parse trees
parse TreeBuilder -> Parser -
> Parser
parse builder parser input =
case parser input of

FATL -> FATL

(OK [] remain) -> OK []
remain

(OK trees remain) -> OK

[builder trees] remain

More Examples

(Find out whether a list is a

palindrome)

isPalindrome'' (Eq a) => [al

-> Bool

isPalindrome'' xs = foldl (\acc

(a,b) -> if a == b then acc else

False) True input where input =
zip X8 (reverse xs)

(Eliminate consecutive
duplicates of list elements)
compress Eq a => [a] -> [al]
compress = map head . group
(Count the leaves of a binary
tree)

countLeaves Empty = 0

countLeaves (Branch _ Empty

Empty) =1

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

Cheatography

by via

More Examples (cont)

countLeaves (Branch _ left right) = countLeaves
left+ countLeaves right

(User-Defined Polymorphic Lists)

(a) Define the function foldList which acts on
user-defined lists just as foldr acts on native
lists.

foldList :: (a -> b -> b) -> b -> List a -> b
foldList £ init Nil = init

foldList f init (Cons x xs) = f x (foldList f init
Xs)

(b) Define the function sumList which adds up the
entries in an argument of type (List Int).
sumList :: (List Int) -> Int

sumList = foldList (+) 0

By jenwwnewnw Not published yet. Sponsored by Readable.com
Last updated 22nd April, 2021. Measure your website readability!
Page 7 of 7.

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

	442 Cheat Sheet - Page 1
	Basic Syntax
	Termin­ology
	Type Signatures
	Recursive Descent Parser

	442 Cheat Sheet - Page 2
	442 Cheat Sheet - Page 3
	Data Types
	Tree
	Properties of Haskell
	Function Syntax

	442 Cheat Sheet - Page 4
	Regex
	Fold List
	Currying
	Notes

	442 Cheat Sheet - Page 5
	Pattern Matching
	Match regular expres­sions using backtr­acking
	Regex Examples

	442 Cheat Sheet - Page 6
	Lecture 11
	More Examples

	442 Cheat Sheet - Page 7

