
442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Basic Syntax

null [] return True if list is empty

'H' `el ‐
em` " Hel ‐
lo"

return True if H is in the
string

head

[1,2,3]

return 1

tail

[1,2,3]

return [2,3]

last

[1,2,3]

return 3

init

[1,2,3]

return [1,2]

:t return the type

fst (5,2) return 5

snd (5,2) return 2

1:2:3:[] same as [1,2,3]

length [] give length of list

reverse

[]

reverse the list

[] !! n gives the nth element

filter

test []

return everything that
passes the test

[] ++ [] list concat enation

[] : [] list concat enation

drop n [] delete the first n element
from list

take n [] make a new list containing
just the first N element

splitAt n

[]

split list into two lists at nth
position

zip [a..]

[0...]

combine tow list into tuples
[(a,0]..]

map

function

[[]

apply a function to all list
elements

Termin ology

Polymo ‐
rphic
Types

Families of types. For
example, (forall a)[a] is the
family of types consisting of,
for every type a, the type of
lists of a. Lists of integers (e.g.
[1,2,3]), lists of characters
(['a', 'b' ,'c']), even lists of lists of
integers, etc., are all members
of this family.

Type
Variable

Lower case, can be of any
type. e.g. fst::(a , b) ->a

Typeclass A sort of interface that defines
some behavior. Basic type
classes: Read, Show, Ord, Eq,
Enum, Num. Num includes Int,
Integer, Float, Double.

Higher -
or dered
Functions

A function that takes other
functions as arguments or
returns a function as result.
Ex: foldl, folder ,zi pWith, flip.

Module A collection of related
functions, types and typecl ‐
asses

Termin ology (cont)

Refere
ntial
Transp
arency

An expression is called refere ‐
ntially transp arent if it can be
replaced with its corres ponding
value without changing the
program's behavior.

 subs tit uting equals for equals,
different from other programing
langua ges

Type Signatures

In type signature, specific (String) and
general (a,b) types can be mixed and
matched.

conca t3: :St rin g-
> Str ing ->S tri ‐
ng- >St ring

concat3 x y z

= x++y++z

const :: a-> b->a const x y = x

allEqual :: (Eq

a) => a -> a ->

a -> Bool

allEqual x y

z = x == y &&

y == z

(.):: (b- >c) ->(a-
> b)- >a- >c

f.g = \x-> f

(g x)

 (\x-> 10+x)5

Lambda function, lead with \, then
arguments, then ->, then the comput ation

Recursive Descent Parser

-- our parsers generally are of

type Parser [Ptree]

data Ptree = VAR String | ID

String | FCN String [Ptree]

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 1 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Recursive Descent Parser (cont)

 der iving (Show, Eq, Read)
data Presult a = FAIL | OK a

String deriving (Show, Eq, Read)

type Parser a = String ->

Presult a

-- As before, we use &> and |>

as AND / OR combin ators on
parsers

expr = variable |> fcnCall |>

identifier

fcnCall = buildCall . (ident ‐
ifier &> skip " (" &> arguments
&> skip ")")
arguments = expr &> argTail |>

empty

argTail = skip " ," &> expr &>
argTail |> empty

identifier input = beginsWith ID

Data.C har.is Lower isTailChar
(dropblank input)

variable input = beginsWith VAR

Data.C har.is Upper isTailChar
(dropblank input)

empty = OK [] -- empty string

parser always succeeds

------ --- --- --- --- --- --- --- ----
--

-- UTILITY ROUTINES

-- Parse a string but don't save

it as a parse tree

skip :: String -> Parser [a]

skip want input =

 let found = take (length
want) input

 rem ainder = dropblank
(drop (length want) input)

 in
 if want == found then OK
[] remainder

 else FAIL

Recursive Descent Parser (cont)

-- Build a singleton list of a

function call parse tree from a

list with

-- an identifier followed by

list of arguments

buildCall :: Presult [Ptree] ->

Presult [Ptree]

buildCall FAIL = FAIL

buildCall (OK [] _) = FAIL

buildCall (OK (ID fcn : args)

remainder) = OK [FCN fcn args]

remainder

-- Build a singleton list of a

parse tree given the kind of

tree we want

-- and the kinds of head and

tail characters we want

beginsWith :: (String -> Ptree)

-> (Char -> Bool) -> (Char ->

Bool) -> Parser [Ptree]

beginsWith _ _ _ " " = FAIL
beginsWith builder isHead isTail

(c:cs)

 | isHead c = let tail =
Data.L ist.ta keWhile isTail cs
 in OK [builder
(c:tail)] (dropblank (drop

(length tail) cs))

 | otherwise = FAIL
-- Remove spaces (and tabs and

newlines) from head of string.

--

dropblank :: String -> String

dropblank = Data.L ist.dr opWhile
Data.C har.is Space
-- kind of character that makes

up 2nd - end character of an id

or var

--

Recursive Descent Parser (cont)

isTailChar :: Char -> Bool

isTailChar c = Data.C har.is Alp ‐
haNum c || c == '_'

------ --- --- --- --- --- --- -------
-- Concat enation and altern ation
operators on parsers

-- (|>) is an OR/Alt ern ation
operator for parsers.

--

infixr 2 |>

(|>) :: Parser a -> Parser a ->

Parser a

(p1 |> p2) input =

 case p1 input of
 m1 @ (OK _ _) -> m1 --
if p1 succeeds, just return what

it did

 FAIL -> p2 input
-- (& >) is an AND/Co nca ten ation
operator for parsers

infixr 3 &>

(& >) :: Parser [a] -> Parser [a]
-> Parser [a]

(p1 &> p2) input =

 case p1 input of
 FAIL -> FAIL -- p1
fails? we fail

 OK ptrees1 remain1 ->
 case p2 remain1 of -
- run p2 on remaining input

 FAIL -> FAIL --
p2 fails? we fail

 OK ptrees2
remain2 -> -- both succeeded

 OK (ptrees1
++ ptrees2) remain2

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 2 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Data Types

Haskell uses various data types, all of them
starts by a capital letter:
-Int: Integer number with fixed precision
-Int eger: Integer number with virtually no
limits
-Flo at: Floating number
-Bool: Boolean. Takes two values: True or
False.
-Char: Character. Any character in the code
is placed between quotes (').
-Str ing: Strings (In fact, a list of Chars).

Properties of Haskell

Pure No side effects in functions
and expres sions

 No assignment operators such
as ++ and =+

 I/O is an exception

 Promotes refere ntial transp ‐
arency

 Once x is assigned to a value,
the value stays

Functional Use recursion instead of
iteration

 Allows operations on functions

Lazy Don't do an operation unless
you need the result.

Tree

data Tree a = Leaf a | Branch a

(Tree a) (Tree a) deriving (Eq,

Show)

treeEq :: (Eq a) => Tree a ->

Tree a -> Bool

treeEq (Leaf x) (Leaf y) = x ==

y

treeEq (Branch x1 l1 r1) (Branch

x2 l2 r2) = x1 == x2 && treeEq

l1 l2 && treeEq r1 r2

treeEq _ _ = False

treeShow
treeShow :: Show a => Tree a ->

[Char]

treeShow (Leaf x) = " (Leaf " ++
show x ++ ")"
treeShow (Branch x left right)=

" (Branch " ++ show x ++ " "++
treeShow left ++ " "++ treeShow

right ++ ")"
Preorder via standard recursion
preorder :: Tree a -> [a]

preorder (Leaf x) = [x]

preorder (Branch x left right)=

x : preorder left ++ preorder

right

Tail-r ecu rsive traversal
preorder' :: Tree a -> [a] ->

[a]

preorder' (Leaf x) xs = x : xs

preorder' (Branch r left right)

xs= r : preorder' left

(preorder' right xs)

Function Syntax

addFour w x y z =

 let a = w + x
 b = y + a
 in z + b
------ --- --- --- --- -----

Function Syntax (cont)

addFour w x y z =

 z + b
 w here
 a = w + x
 b = y + a
------ --- --- --- --- -----
fib n

 | n < 2 = 1
 | othe rwise = fib (n - 1) +
fib (n - 2)

------ --- --- --- --- -----
fib n =

 c ase n of
 0 -> 1
 1 -> 1
------ --- --- --- --- -----
fib n =

 if n < 2
 t hen 1
 e lse fib (n - 1) + fib (n -
2)

------ --- --- --- -------
nameReturn :: IO String

nameReturn = do putStr "What is

your name? "

 name <- getLine
 p utS trLn ("Pl ‐
eased to meet you, " ++ name ++

" !")
 return full

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 3 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Regex

. Any character except new line (\n)

\w Word * 0 or more

\S Not white space + 1 or more

\s White space ? 0 or 1

\W Not word {3} Exactly 3

\d Digit {3,} 3 or more

\D Not digit {3,5} 3, 4 or 5

\b Word boundary ^ Beginning
of String

\B Not word
boundary

$ End of
String

[^
]

matches
characters NOT
in bracket

[] matches
characters
in brackets

| Either Or () Group

ε Empty string containing no characters

^ [. $ { * (\ +) | ? < >
Matech ara cters need to be escaped

Currying

Curr ying is the process of transf orming a
function that takes multiple arguments in a
tuple as its argument, into a function that
takes just a single argument and returns
another function which accepts further
arguments, one by one, that the original
function would receive in the rest of that
tuple.

Currying (cont)

from g :: (a, b) -> c to f :: a ->
(b -> c)

f :: a -> (b -> c) is the same as f
:: a -> b -> c

g (x,y) = x + y is an uncurried
function, has the type g :: Num a =>
(a, a) -> a

h x y = x + y is a curried addition, has
the type h :: Num c => c -> c -> c

curry g can convert it to a curried
function

Fold List

Foldl takes a binary operation, a starting
value, and the list to fold

foldl (-) 0 [3,5,8] => (((0 - 3)
- 5) - 8) => -16

foldl and foldr is under the type class
Foldable

foldl :: Foldable t => (b -> a -

> b) -> b -> t a -> b

foldr :: Foldable t => (a -> b -

> b) -> b -> t a -> b

elem' y ys = foldl (\acc x -> if

x == y then True else acc) False

ys

Notes

head_ repeats n x = (take n x) ==
(take n (drop n x))

returns True if the first n elements of x
equals the second n elements of x.If n ≤ 0,
return True.
------ --- --- --- --- --- --- --- --- -----
swap_ends [] = []

swap_ends [y] = [y]

Notes (cont)

swap_ends x = last x : (reverse

(drop 1 (reverse (drop 1 x))))++

[head x]

Define a function swap_ends that takes a
list and returns the same list but with the
first and last elements swapped.
------ --- --- --- --- --- --- --- --- -----
iterate via standard recursion
iterate1 n f

| n <= 0 = id

| otherwise = f . (iterate1 (n-

1) f)

iterate via foldl
iterate2 n f = foldl (.) id [f |

i <- [1..n]]

------ --- --- --- --- --- --- --- --- -----
f1a :: (b, a) -> (a, b)

f1a = \(x, y) -> (y, x)

f1b :: a -> [a] -> [[a]]

f1b = \x y -> [[x], y]

f1c :: a -> a -> [a] -> [[a]]

f1c = \x y z -> [x : z, y : z]

f1d :: (a -> Bool) -> [a] -> Int

f1d f = length . (filter f)

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

++ is only used for list concat ena tion,
whereas : is used for joining element with
lists
Num class does not support /, Fractional
does

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 4 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Pattern Matching

(x:xs) head x and tail xs

(x:3:xs) list where 2nd element is
3

myData a _

c

ignore one of the
component

data Pattern a = P a | POr

(Pattern a) (Pattern a)| PAnd

(Pattern a) (Pattern a) deriving

Show

match pattern [] = (False, [])

match (P x) (y : ys) = if x == y

then (True, ys) else (False, y :

ys)

match (POr pat1 pat2) xs =case

match pat1 xs of

(True, leftover) -> (True,

leftover)

(False, _) -> match pat2 xs

match (PAnd pat1 pat2) xs =case

match pat1 xs of

(False, _) -> (False, xs)

(True, leftover) ->case match

pat2 leftover of

(False, _) -> (False, xs)

(True, leftover2) -> (True,

leftov er2)

Regex Examples

Natural numbers with no leading

zeros except just 0

0 | [1-9] \d*

Floating point numbers w/o

leading zeros

(0 | [1-9] \d*.\d* | . \d+)?([eE][+-]?[0-9]+))

Hex numbers allowing leading

zeros

0x[0-9a-fA-F]+

Strings with an even #a's or

number ofb's divisible by 2

(b*ab*a)*b*|(a*ba*ba*b)*a*

Match regular expres sions using backtr ‐
acking

data RegExp = Rnull

 | Rend
 | Rany
 | Rch Char
 | Ror RegExp RegExp
 | Rand RegExp RegExp
 | Ropt RegExp
 | Rstar RegExp
 der iving (Eq, Show)
data Mresult = FAIL | OK String

String deriving (Eq, Show)

match :: RegExp -> String ->

Mresult

match Rnull str = OK " " str
match Rend " " = OK " " " "
match Rend str = FAIL

match Rany " " = FAIL
match Rany (c : cs) = OK [c] cs

match (Rch ch1) " " = FAIL
match (Rch ch1) (str @ (ch2 :

left))

 | ch1 == ch2 = OK [ch1] left
 | otherwise = FAIL
match (Ror exp1 exp2) str =

 case match exp1 str of
 FAIL -> match exp2 str
 result1 @ (OK match1
remain1) ->

 case match exp2 str
of

 FAIL -> result1
 result2 @ (OK
match2 remain2) ->

 if length
match1 >= length match2

Match regular expres sions using backtr ‐
acking (cont)

match (Rand exp1 exp2) str =

 case match exp1 str of
 FAIL -> FAIL
 ok @ (OK match1 remain1)
->

 extend match1 (match
exp2 remain1)

match (Ropt exp) str = match

(Ror exp Rnull) str

match (Rstar exp) str =

 case match exp str of
 FAIL -> OK " " str
 OK match1 remain1 ->
 if match1 == " " then
OK " " str
 else
 extend match1
(match (Ror (Rstar exp) Rnull)

remain1)

extend match1 (OK match2

remain2) = OK (match1 ++ match2)

remain2

extend match1 FAIL = FAIL

-- mkAnd string = the exp that

matches each character of the

string in sequence.

--

mkAnd (c : " ") = Rch c
mkAnd (c : cs) = Rand (Rch c)

(mkAnd cs)

--

mkOr (c : " ") = Rch c
mkOr (c : cs) = Ror (Rch c)

(mkOr cs)

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 5 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

Lecture 11

data ParseT = STR String | LIST

[ParseT] deriving (Show, Eq,

Read)

data PResult = FAIL | OK

[ParseT] String deriving (Show,

Eq, Read)

type Parser = String -> PResult

type TreeBu ilder = [ParseT] ->
ParseT -- LIST, for these trees

-- Note use of &> as AND and |>

as OR

list = parse LIST (skip " (" &>
list &> sublist &> skip ")"
 |> skip " [" &>
list &> sublist &> skip "]"
 |> identi fier)
sublist = (skip " ,") &> list &>
sublist |> empty

identifier = literal " x"
empty = OK [] -- empty string

parser always succeeds

-- expr = expr &> literal " +" &>
identifier |> empty

------ --- --- --- --- --- --- --- --- --
- --- --- --- --- --- --- --- --- --- --
- -------
-- UTILITY ROUTINES

-- Parse a string and make it a

parse tree

literal :: String -> Parser

literal want input =

 let found = take (length
want) input

 rem ainder = dropblank
(drop (length want) input)

 in
 if want == found then OK
[STR want] remainder

 else FAIL

Lecture 11 (cont)

-- Parse a string but don't save

it as a parse tree

skip want input =

 case literal want input of
 FAIL -> FAIL
 OK _ remain -> OK []
remain

-- Remove spaces from head of

string

dropblank = Data.L ist.dr opWhile
Data.C har.is Space
------ --- --- --- --- --- --- --- ----

-- Concat enation and altern ation
operators on parsers

-- (|>) is an OR/Alt ern ation
operator for parsers.

--

infixr 2 |>

(|>) :: Parser -> Parser ->

Parser

(p1 |> p2) input =

 case p1 input of
 m1 @ (OK _ _) -> m1 --
if p1 succeeds, just return what

it did

 FAIL -> p2 input
-- (& >) is an AND/Co nca ten ation
operator for parsers

--

infixr 3 &>

(& >) :: Parser -> Parser ->
Parser

(p1 &> p2) input =

 case p1 input of
 FAIL -> FAIL -- p1
fails? we fail

Lecture 11 (cont)

 OK ptrees1 remain1 ->
 case p2 remain1 of -
- run p2 on remaining input

 FAIL -> FAIL --
p2 fails? we fail

 OK ptrees2
remain2 -> -- both succeeded

 OK (ptrees1
++ ptrees2) remain2

------ --- --- --- --- --- --- --- --
- --- --- -------
-- Building a parse tree from

list of found parse trees

parse :: TreeBu ilder -> Parser -
> Parser

parse builder parser input =

 case parser input of
 FAIL -> FAIL
 (OK [] remain) -> OK []
remain

 (OK trees remain) -> OK
[builder trees] remain

More Examples

(Find out whether a list is a

palindrome)

isPali ndr ome'' :: (Eq a) => [a]
-> Bool

isPali ndr ome'' xs = foldl (\acc
(a,b) -> if a == b then acc else

False) True input where input =

zip xs (reverse xs)

(Eliminate consec utive
duplicates of list elements)

compress :: Eq a => [a] -> [a]

compress = map head . group

(Count the leaves of a binary

tree)

countL eaves Empty = 0
countL eaves (Branch _ Empty
Empty) = 1

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 6 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

442 Cheat Sheet
by jenwwnewnw via cheatography.com/77170/cs/18941/

More Examples (cont)

countL eaves (Branch _ left right) = countL eaves
left+ countL eaves right
(User- Defined Polymo rphic Lists)
(a) Define the function foldList which acts on

user-d efined lists just as foldr acts on native
lists.

foldList :: (a -> b -> b) -> b -> List a -> b

foldList f init Nil = init

foldList f init (Cons x xs) = f x (foldList f init

xs)

(b) Define the function sumList which adds up the

entries in an argument of type (List Int).

sumList :: (List Int) -> Int

sumList = foldList (+) 0

By jenwwnewnw

cheatography.com/jenwwnewnw/

Not published yet.
Last updated 22nd April, 2021.
Page 7 of 7.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/jenwwnewnw/
http://www.cheatography.com/jenwwnewnw/cheat-sheets/cs18941
http://www.cheatography.com/jenwwnewnw/
https://readable.com

	442 Cheat Sheet - Page 1
	Basic Syntax
	Terminology
	Type Signatures
	Recursive Descent Parser

	442 Cheat Sheet - Page 2
	442 Cheat Sheet - Page 3
	Data Types
	Tree
	Properties of Haskell
	Function Syntax

	442 Cheat Sheet - Page 4
	Regex
	Fold List
	Currying
	Notes

	442 Cheat Sheet - Page 5
	Pattern Matching
	Match regular expressions using backtracking
	Regex Examples

	442 Cheat Sheet - Page 6
	Lecture 11
	More Examples

	442 Cheat Sheet - Page 7

