Identities	
$\sec x=1 / \cos x$	
$\csc x=1 / \sin x$	
$\cot =1 / \tan x$	
Cotangent/tangent	
$\tan x=\sin x / \cos x$	
$\cot x=\cos x / \sin x$	
Reciprocal Identities	
$\sin \theta=\frac{1}{\csc \theta} \quad \cos \theta=\frac{1}{\sec \theta}$	$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta}$	$\cot \theta=\frac{1}{\tan \theta}$

Domain and Range

Domain: The domain of a function is the set of all possible input values (often the "x" variable), which produce a valid output from a particular function. It is the set of all real numbers for which a function is mathematically defined. Range: The range is the set of all possible output values (usually the variable y, or sometimes expressed as $f(x)$), which result from using a particular function.

By Jcardona
cheatography.com/jcardona/

Unit Square

Logarithmic and Exponential Equations
$y=\ln x$
$y=b^{\wedge} x$

Half-Angle Identities

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}\right)- \pm \sqrt{\frac{11-\cos 0}{2}} \\
& \cos \left(\frac{1}{2}=+\sqrt{\frac{1}{1+\operatorname{tacose}}}\right. \\
& \tan \left(\frac{a}{2}=\frac{1-\cos a}{\sin a}=\frac{\sin a}{1+\operatorname{tin} a}\right.
\end{aligned}
$$

Published 3rd June, 2015.

Last updated 3rd June, 2015.
Page 1 of 1 .

Double-angle Identities

```
x =(0)+ +\sqrt{}{\frac{2m}{2}}
4- -(%)
```


Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

