Cheatography

Tute 1

"If you get a positive value times a number, You need to shift the decimal to the right as many times as the number specified - If negative move it to the right.
Simple interest formula $=S=F V=P(1$ plus IK) Compound interest formula $=\mathrm{Sk}=\mathrm{P}$ (1 plus i) ${ }^{\wedge} k$

Sn = $\mathrm{P}(1 \text { plus } \mathrm{I} / \mathrm{T})^{\wedge} n$
where I is interest
T is frequency of compounding per year
K is number of years
N is total number of periods - $\mathrm{K} T$ or $T \mathrm{~K}$ Depreciation Formula $=$ Vo or $\mathrm{P}=$ Inital value,
$\mathrm{Vk}=\mathrm{P}(1-\mathrm{d})^{\wedge} \mathrm{k}$

Tute 4

1. $Q=24-3 p$ or $p=8-Q / 3$
2. $Q=5 p-8$ or $p=1.6+0.2 Q$

3 , either $24-3 p=5 p-8$ and $p=4$
or $8^{*} Q / 3=1.6+0.2 Q$ and $Q=12$
4. $T R=p \cdot Q=8 Q-Q 2 / 3$
$M R=8-2 Q / 3$
5. $\mathrm{Max} \Pi \rightarrow \mathrm{MR}=\mathrm{MC}$
$8-2 Q / 3=Q / 3$
$Q=8$
$\mathrm{P}=8-8 / 3=5.33$
6. Impose $p \leq 3$ - instead of equilibrium price p
$=4$
Demand at $p=3: Q D=24-3(3)=15$
Supply at $p=3: Q S=5(3)-8=7$
Excess demand $=15-7=8$
7. $A V C=5+3 Q$
$T V C=(A V C) Q=5 Q+3 Q 2$
8. $P=18-3 Q, M R=18-6 Q$
$18-6 Q=12, Q=1, p=15$

Tute 2

1. 5 years $1+r=(F V / P V) 1 / 5$
(i) $r=10.38 \%$
(ii) $r=10.47 \%$
(iii) $r=10.51 \%$
(iv) $r=10.52 \%$
(v) $r=10.52 \%$
2. $1+r=(1+0.06 / 12) 8 \cdot(1+0.072 / 12) 4$
$1+r=(1.005) 8 \cdot(1.006) 4$
$1+r=(1.0407) \cdot(1.0242)=1.06591$
$r=6.59 \%$
For an initial outlay of \$1000 the net return is $1,000(1.067)-10=1,057$.

Rate of return 5.7\%
For larger outlays, e.g. 10,000. 10,000 (1.067) $-10=10,660$

Rate of return 6.6%
3. $2500=97(1+r) 40$ Take logs of both sides. $\operatorname{Ln}(2500 / 97)=40 \operatorname{Ln}(1+r)$, or $3.249335=$ $40 \operatorname{Ln}(1+r)$, or $\operatorname{Ln}(1+r)=0.0812334$

Take the exponential of both sides: $1+r=$
1.084624 and $r=8.4624 \%$
$97(1.0867) 40=97(27.822)=2698.72$
Either (i)The rate of return is less than the bond rate or (ii) the $\$ 97$ would have grown to more than \$2,500 hence the purchase wasn't a good investment.
4. (i) 10,000
(ii) $10,000(1.08)-2=10,000(0.8573)=$
8573.39
(iii) $10,000(1.08)-10=10,000(0.4632)=$ 4631.93
5. (i) $1,050(1.05)-1=1000$
(ii) 1,108 (1.05)-2 = 1004.99 (*)
(iii) $1,160(1.05)-3=1002.05$
6. $P V=10,000(1.07)-2+5,000(1.07)-3+$

15,000 (1.07)-5
$\mathrm{PV}=8,734.39+4,081.49+10,694.79$
$P V=23,510.67$
7. $100,000(1+\mathrm{i}) 16=125,000$

Not published yet
Last updated 12th November, 2014.
Page 1 of 2

Tute 2 (cont)

4
$(1+\mathrm{i}) 16=1.25 \rightarrow 1+\mathrm{i}=(1.25) 1 / 16=$ 1.014044

44
$\mathrm{i}=0.0562$ or 5.62%
OR use logarithms
$\operatorname{Ln}[(1+i / 4) 16]=\operatorname{Ln} 1.25$ and $16 \operatorname{Ln}(1+i / 4)=$ 0.22314
$\operatorname{Ln}(1+\mathrm{i} / 4)=0.0139465$ and $1+\mathrm{i} / 4=$
1.014044.
8. $15,000(1+0.055) 12 k=30,000$

12
$(1+0.055) 12 \mathrm{k}=2$
12
$12 k \operatorname{Ln}(1+0.055)=\operatorname{Ln} 2$
12
$12 \mathrm{k} 0.0045728=0.69315$
$k=12.63$ years. About 12 years and $71 / 2$ months.

Tute 3

1. Add up PV to get NPV
i = 6\% A B
-14,000
9.905.66

5,339.98
1,091.51-15,000
943.40

5,161.98
11,754,67
NVP (6\%): 2,337.14 2,860.05 (*)
i = 9\% A B
-14,000
9,633.03
5,050.08
1,003.84-15,000
917.43

4,881.74
10,810.57
NVP (9\%): 1,686.95 (*) 1,609.74

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

```
Tute 3 (cont)
2. Find i such that NVP (i)=0
NVP (10%) = -15,000 + 909.09 + 4,793.39 + 10,518.41
NVP (10%) = 1,220.89 > 0
NVP (12%) = -15,000 + 892.86 + 4,623.72 + 9,964.92
NVP (12%) = 481.51>0
NVP (13%) = -15,000 + 884.96 + 4,542.25 + 9,702.70
NVP (13%) = 129.91 > 0
NVP (14%) = -15,000 + 877.19 + 4,462.91 + 9,449.60
NVP (14%) = -210.29 < 0
Say i is approximately i=13.38%
3. PV = 150 [1 - (1 + 0.052 / 52)-156]
0.052/52
PV = 150 [1-0.8556] = 21,656.12
0.001
4. FV = 150 [(1.001)156-1]
0.001
FV = 150 [1.16873-1] = 25,310.26
0 . 0 0 1
FV = PV (1.001)156
25,310.26=21,656.12(1.16873) = 25,310.27
Almost perfect match.
5. (a) R=120,000 (0.05/12)=500
[1 - (1 + 0.05)-120] [1 - 0.60716]
1 2
R=1272.79
(b) Outstanding Balance: B = 1272.79[1-(1+0.05)-96]/(
0.05/12)
12
B=1272.79 [1-0.6709]= 100,536.97
0.05/12
(c) New R=100,536.97(0.09/12)
[1 - (1 + 0.09)-96]
1 2
New R = 100,536.97 (0.0075) = 1472.89
[ 1-0.48806]
```

Not published yet.
Last updated 12th November, 2014.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

