
COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Algorithms

Definition unambi ​guous
procedure executed
in a finite number of
steps

What
makes a
good
algorithm?

Correc ​tness, Speed,
Space, Simplicity

Speed: time it takes to solve
problem

Space: amount of memory
required

Simpli ​city: easy to unders ​tand,
easy to implement,
easy to debug,
modify, update

Running Time

Definition measur ​ement of the
speed of an
algorithm

Dependent
variables:

size of input &
content of input

Best Case: time on
the
easiest
input of
fixed
size

meanin ​gl
ess

Average
Case:

time on
average
input

good
measure,
hard to
calculate

Running Time (cont)

Worst
Case:

time on
most
difficult
input

good for safety
critical systems, easy
to estimate

Proofs by Induction (Examples)

Loop Invariants

Definition loop property that holds before
and after every iteration of a
loop.

Steps:

1.
Initia ​liz ​ati
on

If it is true prior to the iteration of
the loop

2.
Mainte ​na
nce

If it is true before an iteration of
the loop, it remains true before
the next iteration

3.
Termin ​ati
on

When the loop termin ​ates, the
invariant gives us a useful
property that helps show the
algorithm is correct

QuickSort

Divide: choose an element
of the array for
pivot

 divide into 3 sub-
gr ​oups; those
smaller, those
larger and those
equal to pivot

Conquer recurs ​ively sort
each group

Combine concat ​enate the 3
lists

QuickSort

Algorithm partition(A,

start, stop)

Input: An array A,

indices start and

stop.

Output: Returns an

index j and rearranges

the elements of A

such that for all i<j,

A[i] ! A[j] and

for all k>i, A[k] "

A[j].

pivot # A[stop]

left # start

right # stop - 1

while left ! right do

while left ! right and

A[left] ! pivot) do

left # left + 1

 ​while (left ! right
and A[right] " pivot)

do right # right -1

if (left < right)

then exchange A[left] $

A[right]

QuickSort (cont)

exchange A[stop] $

A[left]

return left

Time Comple ​xities:
• Worse case:
– Already sorted array (either
increasing or decrea ​sing)
– T(n) = T(n-1) + c n + d
– T(n) is O(n2)
• Average case: If the array is in
random order, the
pivot splits the array in roughly
equal parts, so the
average running time is O(n log
n)
• Advantage over mergeSort:
– constant hidden in O(n log n)
are smaller for quickSort.
Thus it is faster by a constant
factor
– QuickSort is easy to do “in-
place”

In Place Sorting

Defini ​tion: Uses only a
constant amount
of memory in
addition of that
used to store the
input

Import ​ance
:

Great for large
data sets that
take up large
amounts of
memory

Examples: Selection Sort,
Insertion Sort
(Only moving
elements around
the array)

MergeSort: Not in place: new
array required

By jasondias
cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 1 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445380086_Screen Shot 2015-10-20 at 6.28.15 PM.png
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Object Orientated
Progra ​mming

Defini ​tion: User defined types
to complement
primitive types

 Called a class

Contains: Data & methods

Static
members:

members shared
by all objects of the
class

Recursion Progra ​mming

Definition using methods that
call themselves

Structure:

base
case

a simple
occurrence that can
be answered
directly

recursive
case

A more complex
occurrence of the
problem that
cannot be directly
answered, but can
instead be
described in terms
of smaller
occurr ​ences of the
same problem.

Divide & Conquer

Divide the problem into sub
problems that are
similar to the
original but smaller
in size

Conquer the sub-pr ​oblems
by solving them
recurs ​ively. If they
are small enough,
solve them in a
straig ​htf ​orward
manner

Divide & Conquer (cont)

Combine the solutions to create a solution
to the original problem

BIG O Definition

f(n) & g(n) are two non negative functions
defined on the natural numbers N

f(n) is
O(g(n)) if
and only
if:

there exists an integer n0 and a
real number c such that Ɐn>=
n0 f(n) <= c * g(n)

 N.B. The constant c must not
depend on n

Big O Visual ​ization

Big O Recurrence

Sum of a (n+1) -1)/(a-1)

Limita ​tions of Arrays

Size has to be known in
advance

memory required may be larger
than number of elements

inserting or deleting an element
takes up to O(n)

ADT: Queues

FIFO(First in first out)

Any first come first serve
service

Operations enqueue() - add
to rear

 dequeue() -
removes object at
front

 front() - returns
object at front

 size() - returns
number of objects
O(n)

 isEmpty() -
returns true if
empty

Double Ended Queues ​(de ​que):
Allows for insertions and
removals from front and back
- By adding reference to
previous node - removals occur
in O(1)

ATD: Stacks

Def: Operations allowed at
only one end of the
list (top)

 LIFO: (Last in first out)

Operat ​
ions:

push() - inserts
element at top

 pop() - removes
object at top

ATD: Stacks (cont)

 top() - returns top
element without
removing it

 size() - returns number
of elements

 isEmpty() - returns
True if empty

Applic ​a
tions

page visited history in
web browser

 JVM - keeps track of
chain of active
elements (allows for
rec)

Perfor ​‐
mance:

space used: O(n)

 operat ​ions: O(1)

Limita ​ti
ons

max size must be
defined prior

 pushing to a full stack
causes
implem ​ent ​ation
specific error

Binary ​Search

BinarySearch(A[0..N-1],

value) {

 ​ ​ ​ ​ ​ low = 0
 ​ ​ ​ ​ ​ high = N - 1
 ​ ​ ​ ​ ​ ​while (low <=
high) {

 ​ ​ ​ ​ ​ ​ ​ mid = (low +
high) / 2

 ​ ​ ​ ​ ​ ​ ​ ​ ​ if (A[mid] >
value)

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ high = mid
- 1

 ​ ​ ​ ​ ​ ​ ​ ​ ​ else if
(A[mid] < value)

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ low = mid
+ 1

 ​ ​ ​ ​ ​ ​ ​ ​ ​ else
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​return mid
 ​ ​ ​ ​ ​ }

By jasondias
cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

i from 0 to n = (a

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445523925_Screen Shot 2015-10-22 at 10.25.11 AM.png
/uploads/jasondias_1445529071_camera_capture.jpg
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Binary ​Search (cont)

 ​ ​ ​ ​ ​ ​return not_found
// value would be

inserted at index " ​low ​"
 ​ }

Invari ​ants:
value > A[i] for all i <

low value < A[i] for all

i > high

Worst case perfor ​mance: O(log
n)
Best case perfor ​mance: O(1)
Average case perfor ​mance:
O(log n)

Binary ​Search (Recur ​sive)

int bsearch(int[] A, int

i, int j, int x) {

if (i<j) {

int e = [(i+j)/2];

if (A[e] > x) {

return bsearc ​h(A ​,i, ​e-1);
} else if (A[e] < x) {

return

bsearc ​h(A ​,e+ ​1,j);
} else {

return e;

}

} else { return -1; }

}

Time Comple ​xity: log(ba ​se2)(n)

Insertion Sort (Itera ​tive)

For i ← 1 to length(A) -

1

 j ← i

 ​while j > 0 and A[j-1]
> A[j]

 swap A[j] and A[j-1]

 j ← j - 1

 end while

end for

Time comple ​xity: O(n)

Merge- ​the ​n-sort

Algorithm

ListIntersection (A,m,

B,n)

Input: Same as before

Output: Same as before

inter ← 0

Array C[m+n];

for i ← 0 to m-1 do C[i]

← A[i];

for i ← 0 to n-1 do C[

i+m] ← B[i];

C ← sort(C, m+n);

ptr ← 0

while (ptr < m+n-1) do

{

 if (C[ptr] = C[ptr+1]

) then {

 ​inter ← inter+1
 ptr ← ptr+2

 }

 else ptr ← ptr+1

}

return inter

Time Comple ​xity: (m+n) *
(élog(​m+n)ù) + m + n -1

MergeSort (Recur ​sive)

MergeSort (A, p, r) //

sort A[p..r] by divide &

conquer

if p < r

 ​ ​ then q ← ⎣(p+r)/2⎦
 ​ ​ ​ ​ ​ ​Mer ​geSort (A, p,
q)

 ​ ​ ​ ​ ​ ​Mer ​geSort (A, q+1,
r)

 ​ ​ ​ ​ ​ ​Merge (A, p, q, r)

Time Comple ​xity: 2T(n/2) + k • n
+ c’

Primitive Operations

assignment

calling method

returning from method

arithmetic

compar ​isons of primitive types

condit ​ional

indexing into array

following object reference

Assume each primitive operation holds the
same value = 1 primitive operation

Prove Big - Oh

By jasondias
cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

2

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445524538_camera_capture.jpg
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

	COMP250 Cheat Sheet - Page 1
	Algorithms
	QuickSort
	Proofs by Induction (Examples)
	QuickSort
	Loop Invariants
	Running Time
	In Place Sorting

	COMP250 Cheat Sheet - Page 2
	Object Orientated Progra­mming
	Limita­tions of Arrays
	BIG O Definition
	ADT: Queues
	Recursion Progra­mming
	Big O Visual­ization
	Big O Recurrence
	Binary­Search
	Divide & Conquer
	ATD: Stacks

	COMP250 Cheat Sheet - Page 3
	Merge-­the­n-sort
	Primitive Operations
	Prove Big - Oh
	Binary­Search (Recur­sive)
	MergeSort (Recur­sive)
	Insertion Sort (Itera­tive)

