Cheatography

COMP250 Cheat Sheet

by jasondias via cheatography.com/21209/cs/5468/

Algorithms	
Definition	unambiguous procedure executed in a finite number of steps
What makes a good algorithm?	Correctness, Speed, Space, Simplicity
Speed:	time it takes to solve problem
Space:	amount of memory required
Simplicity:	easy to understand, easy to implement, easy to debug, modify, update
Running Ti	me
Definition	measurement of the speed of an

Definition	measurement of the speed of an algorithm			
Dependent variables:	size of inp content of	out & input		
Best Case:	time on the easiest input of fixed size	meaningl ess		
Average Case:	time on average input	good measure, hard to calculate		

Running T	ime (cont))	QuickSort		
Worst tin Case: mo dif inp	ne on ost ificult out	Divide:	cł of pi di		
Proofs by		gr sr la ed			
Claim: <i>for an</i> Proof:	Conquer	re			
 Induction s for anyk ≥ 	n = 1 step: :1, <i>if</i> 1+2+	$1 = \frac{1}{2}$ $3 + 4 + \dots + k = \frac{k \cdot (k+1)}{2}$	Combine	cc lis	
<i>then</i> 1+2	2+3+4+···+ <i>k</i>	$+(k+1) = \frac{(k+1)\cdot(k+2)}{2}$	QuickSort	ł	
			Algorith	im j	
Loop Inva	start, sto				
Definition	erty that holds before every iteration of a	Input: An indices st stop.			
0	юор.		Output: Re		
1. Initializati on	. If it is true prior to the iteration of nitializati the loop				
2. Maintena nce	If it is true the loop, the next it	A[i] ! A[for all k A[j].			
3. Terminati on	When the invariant g property t algorithm	e loop terminates, the gives us a useful hat helps show the is correct	<pre>pivot # left # s right # while le</pre>	A [ta st	
			while le A[left] left # 1 while (and A[ri	ft! ! ef le	

de:choose an element of the array for pivotdivide into 3 sub- groups; those smaller, those larger and those equal to pivotnquerrecursively sort each groupnbineconcatenate the 3 lists	ckSort	
divide into 3 sub- groups; those smaller, those larger and those equal to pivotrecursively sort each groupnbineconcatenate the 3 lists	de:	choose an element of the array for pivot
nquer recursively sort each group nbine concatenate the 3 lists		divide into 3 sub- groups; those smaller, those larger and those equal to pivot
nbine concatenate the 3 lists	nquer	recursively sort each group
	nbine	concatenate the 3 lists

Algorithm partition(A,
start, stop)
Input: An array A,
indices start and
stop.
Output: Returns an
index j and rearranges
the elements of A
such that for all i <j,< td=""></j,<>
A[i] ! A[j] and
for all k>i, A[k] "
A[j].
pivot # A[stop]
left # start
right # stop - 1
while left ! right do
while left ! right and
A[left] ! pivot) do
left # left + 1
while (left ! right
and A[right] " pivot)
do right # right -1
if (left < right)
then exchange A[left] \$
A[right]

QuickSort (cont) exchange A[stop] \$ A[left] return left Time Complexities: • Worse case: - Already sorted array (either increasing or decreasing) -T(n) = T(n-1) + c n + d-T(n) is O(n2) • Average case: If the array is in random order, the pivot splits the array in roughly equal parts, so the average running time is O(n log n) • Advantage over mergeSort: - constant hidden in O(n log n) are smaller for quickSort. Thus it is faster by a constant factor - QuickSort is easy to do "inplace" In Place Sorting

	Definition:	Uses only a constant amount of memory in addition of that used to store the input
	Importance :	Great for large data sets that take up large amounts of memory
	Examples:	Selection Sort, Insertion Sort (Only moving elements around the array)
10	MergeSort:	Not in place: new array required

By jasondias

cheatography.com/jasondias/

Published 20th October, 2015. Last updated 22nd October, 2015. Page 1 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

COMP250 Cheat Sheet by jasondias via cheatography.com/21209/cs/5468/

Object Orientated		Divide & Conquer (cont)		Limitati	Limitations of Arrays		ATD: Sta	acks (cont)	
Programm Definition:	User defined types to complement	Combine	the solutions to create a solution to the original problem	Size has advance	s to b	e known in		top() - returns top element without removing it	
	primitive types	BIG O Def	inition	than nur	than number of elements			size() - returns numbe	
Contains:	Data & methods	f(n) & g(n) defined on	f(n) & g(n) are two non negative functions defined on the natural numbers N		inserting or deleting an element takes up to O(n)			isEmpty() - returns	
Static members:	members shared by all objects of the class	f(n) isthere exists an integer n0 and a $O(g(n))$ if real number c such that $\forall n > =$ and onlyA n0 f(n) <= c * g(n) if:N.B. The constant c must not depend on nA SBig O VisualizationB		ADT: Q	ADT: Queues FIFO(First in first out) Any first come first serve service		Applica tions	True if empty page visited history in web browser	
Recursion Definition	Programming using methods that			Any first service				JVM - keeps track of chain of active elements (allows for	
Structure:	call themselves			oporalio		to rear dequeue() -	Perfor- mance:	rec) space used: O(n)	
base case	a simple occurrence that can be answered		Intuition and visualization • "f(n) is Og(n)n" iff there exists a point n, beyond which (in) is less than once fixed constant times g(n) g(n) f(n) f(n)			removes object at front	Limitati	operations: O(1) max size must be	
	directly		For all $n \ge n_0$ $f(n) \le c \cdot g(n)$ (for $c \ge 1$) n_0			object at front	ons	defined prior	
recursive case	A more complex occurrence of the problem that cannot be directly	Big O Rec	urrence			size() - returns number of objects O(n)	pushing to a full sta causes implementation		
	answered, but can instead be	mm. Mugisert (A, stort, stop) terr = stop) return (1+1+(1)=3 or 2 terr = stop) return			isEmpty() - returns true if empty	BinarySe	earch		
of smaller occurrences of the same problem.		Mar (CHOMENTARY) 2) 3 + (Manding !!) = 4 Margar(A, Start, mid) 2 1 + 7(3) Margar(A, Start, mid, Step) 4 9,43 gruan Margar(A, Start, mid, Step) 4 9,43 gruan Let T(n) be & prin or by Margarit when Step-tart+then		Double I Allows fo removal	Double Ended Queues(deque): Allows for insertions and removals from front and back - By adding reference to			<pre>BinarySearch(A[0N-1], value) { low = 0 high = N - 1</pre>	
Divide & C	onquer	T(n)= 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	previous node - removals occur		e - removals occur	v	while (low <=	
Divide	the problem into sub problems that are similar to the original but smaller	$\begin{array}{c c} G_{CU} & find \\ \hline for Mustacher \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	an explicit from u.e. of T proper, spice $T(h) \cdot 3$ $h(1 + x + 2T(\frac{1}{2}), h(2 + 1))$ $1 + \frac{1}{23} - $	ATD: St	ATD: Stacks hi Def: Operations allowed at		high) /	<pre>mid = (low +</pre>	
Conquer	the sub-problems by solving them	$\frac{K \neq I}{E \times e} = \frac{K \neq I}{E \times e}$	$\begin{array}{c} (1+\frac{\pi}{4}+27(\frac{\pi}{4})) & (1+\frac{\pi}{4}+$		list LIF	(top) O: (Last in first out)	value) - 1	high = mic	
	recursively. If they are small enough, solve them in a straightforward manner	(T(n)=	$\left(\left(\left(n \right) \right) , n \log_{2} n + 4n + 1 \right) \right)$		pus eler	h() - inserts ment at top	(A[mid]	else if < value)	
		Sum of a ^{i fr}	om 0 to n = $(a(n+1) - 1)/(a-1)$		pop obje	o() - removes ect at top	+ 1	low = mid	
								else	

By **jasondias**

cheatography.com/jasondias/

Published 20th October, 2015. Last updated 22nd October, 2015. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

}

Cheatography

COMP250 Cheat Sheet

by jasondias via cheatography.com/21209/cs/5468/

BinarySearch (cont)				
return not_found				
// value would be				
inserted at index "low"				
}				
Invariants:				
value > A[i] for all i <				
low value < A[i] for all				
i > high				
Worst case performance: O(log				
n)				

Best case performance: O(1) Average case performance: O(log n)

BinarySearch (Recursive)

```
int bsearch(int[] A, int
i, int j, int x) {
    if (i<j) {
        int e = [(i+j)/2];
        if (A[e] > x) {
        return bsearch(A,i,e-1);
        } else if (A[e] < x) {
        return
        bsearch(A,e+1,j);
        } else {
        return e;
        }
        else { return -1; }
    }
```

Time Complexity: log(base2)(n)

Insertion Sort (Iterative)

```
For i ← 1 to length(A) -
1
j ← i
while j > 0 and A[j-1]
> A[j]
swap A[j] and A[j-1]
j ← j - 1
end while
end for
```

Time complexity: O(n²)

```
Merge-then-sort
Algorithm
ListIntersection (A,m,
B,n)
Input: Same as before
Output: Same as before
inter ← 0
Array C[m+n];
for i ← 0 to m-1 do C[i]
← A[i];
for i ← 0 to n-1 do C[
i+m ] \leftarrow B[i];
C \leftarrow \text{sort}(C, m+n);
ptr ← 0
while ( ptr < m+n-1 ) do
{
 if (C[ptr] = C[ptr+1]
) then {
 inter ← inter+1
 ptr ← ptr+2
 }
 else ptr ← ptr+1
}
return inter
Time Complexity: (m+n) *
(\lceil log(m+n) \rceil) + m + n - 1
MergeSort (Recursive)
MergeSort (A, p, r) //
sort A[p..r] by divide &
conquer
if p < r
   then q \leftarrow \lfloor (p+r)/2 \rfloor
      MergeSort (A, p,
q)
      MergeSort (A, q+1,
r)
      Merge (A, p, q, r)
Time Complexity: 2T(n/2) + k \cdot n
+ C'
```

Primitive Operations assignment calling method returning from method arithmetic comparisons of primitive types conditional indexing into array following object reference Assume each primitive operation holds the same value = 1 primitive operation Prove Big - Oh $f(m) = n^{i+2n+1}$ is $O(n^{i})$ $g(m) = n^{i}$

$\frac{n^{4}}{n^{4}} \leq C$ $\frac{n^{4}(n+1) \leq n^{2} + 2n+1}{n^{4}} \quad \forall n \geq 1$ $\frac{(n^{4} + 1(n) + 1)}{(1)^{4}} \geq \frac{n^{4}(2n+1)}{n^{4}}$ $\frac{(1)^{4}}{(1)^{4}} \geq \frac{n^{2}(2n+1)}{n^{4}}$ $\frac{(1)^{2}}{n^{4}} \geq \frac{n^{2} + 2n+1}{n^{4}}$ $\frac{n^{2} + 2n+1}{n^{4}} \leq \frac{\sqrt{n} \geq 1}{n^{4}}$ $\frac{n^{2} + 2n+1}{n^{4}} \leq \frac{\sqrt{n} \geq 1}{n^{4}}$ $\frac{1}{n^{4}} \leq \frac{\sqrt{n} \geq 1}{n^{4}}$

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By jasondias cheatography.com/jasondias/

Published 20th October, 2015. Last updated 22nd October, 2015. Page 3 of 3.