
COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Algorithms

Definition unambi guous
procedure executed
in a finite number of
steps

What
makes a
good
algorithm?

Correc tness, Speed,
Space, Simplicity

Speed: time it takes to solve
problem

Space: amount of memory
required

Simpli city: easy to unders tand,
easy to implement,
easy to debug,
modify, update

Running Time

Definition measur ement of the
speed of an
algorithm

Dependent
variables:

size of input &
content of input

Best Case: time on
the
easiest
input of
fixed
size

meanin gl
ess

Average
Case:

time on
average
input

good
measure,
hard to
calculate

Running Time (cont)

Worst
Case:

time on
most
difficult
input

good for safety
critical systems, easy
to estimate

Proofs by Induction (Examples)

Loop Invariants

Definition loop property that holds before
and after every iteration of a
loop.

Steps:

1.
Initia liz ati
on

If it is true prior to the iteration of
the loop

2.
Mainte na
nce

If it is true before an iteration of
the loop, it remains true before
the next iteration

3.
Termin ati
on

When the loop termin ates, the
invariant gives us a useful
property that helps show the
algorithm is correct

QuickSort

Divide: choose an element
of the array for
pivot

 divide into 3 sub-
gr oups; those
smaller, those
larger and those
equal to pivot

Conquer recurs ively sort
each group

Combine concat enate the 3
lists

QuickSort

Algorithm partition(A,

start, stop)

Input: An array A,

indices start and

stop.

Output: Returns an

index j and rearranges

the elements of A

such that for all i<j,

A[i] ! A[j] and

for all k>i, A[k] "

A[j].

pivot # A[stop]

left # start

right # stop - 1

while left ! right do

while left ! right and

A[left] ! pivot) do

left # left + 1

 while (left ! right
and A[right] " pivot)

do right # right -1

if (left < right)

then exchange A[left] $

A[right]

QuickSort (cont)

exchange A[stop] $

A[left]

return left

Time Comple xities:
• Worse case:
– Already sorted array (either
increasing or decrea sing)
– T(n) = T(n-1) + c n + d
– T(n) is O(n2)
• Average case: If the array is in
random order, the
pivot splits the array in roughly
equal parts, so the
average running time is O(n log
n)
• Advantage over mergeSort:
– constant hidden in O(n log n)
are smaller for quickSort.
Thus it is faster by a constant
factor
– QuickSort is easy to do “in-
place”

In Place Sorting

Defini tion: Uses only a
constant amount
of memory in
addition of that
used to store the
input

Import ance
:

Great for large
data sets that
take up large
amounts of
memory

Examples: Selection Sort,
Insertion Sort
(Only moving
elements around
the array)

MergeSort: Not in place: new
array required

By jasondias
cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 1 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445380086_Screen Shot 2015-10-20 at 6.28.15 PM.png
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Object Orientated
Progra mming

Defini tion: User defined types
to complement
primitive types

 Called a class

Contains: Data & methods

Static
members:

members shared
by all objects of the
class

Recursion Progra mming

Definition using methods that
call themselves

Structure:

base
case

a simple
occurrence that can
be answered
directly

recursive
case

A more complex
occurrence of the
problem that
cannot be directly
answered, but can
instead be
described in terms
of smaller
occurr ences of the
same problem.

Divide & Conquer

Divide the problem into sub
problems that are
similar to the
original but smaller
in size

Conquer the sub-pr oblems
by solving them
recurs ively. If they
are small enough,
solve them in a
straig htf orward
manner

Divide & Conquer (cont)

Combine the solutions to create a solution
to the original problem

BIG O Definition

f(n) & g(n) are two non negative functions
defined on the natural numbers N

f(n) is
O(g(n)) if
and only
if:

there exists an integer n0 and a
real number c such that Ɐn>=
n0 f(n) <= c * g(n)

 N.B. The constant c must not
depend on n

Big O Visual ization

Big O Recurrence

Sum of a (n+1) -1)/(a-1)

Limita tions of Arrays

Size has to be known in
advance

memory required may be larger
than number of elements

inserting or deleting an element
takes up to O(n)

ADT: Queues

FIFO(First in first out)

Any first come first serve
service

Operations enqueue() - add
to rear

 dequeue() -
removes object at
front

 front() - returns
object at front

 size() - returns
number of objects
O(n)

 isEmpty() -
returns true if
empty

Double Ended Queues (de que):
Allows for insertions and
removals from front and back
- By adding reference to
previous node - removals occur
in O(1)

ATD: Stacks

Def: Operations allowed at
only one end of the
list (top)

 LIFO: (Last in first out)

Operat
ions:

push() - inserts
element at top

 pop() - removes
object at top

ATD: Stacks (cont)

 top() - returns top
element without
removing it

 size() - returns number
of elements

 isEmpty() - returns
True if empty

Applic a
tions

page visited history in
web browser

 JVM - keeps track of
chain of active
elements (allows for
rec)

Perfor ‐
mance:

space used: O(n)

 operat ions: O(1)

Limita ti
ons

max size must be
defined prior

 pushing to a full stack
causes
implem ent ation
specific error

Binary Search

BinarySearch(A[0..N-1],

value) {

 low = 0
 high = N - 1
 while (low <=
high) {

 mid = (low +
high) / 2

 if (A[mid] >
value)

 high = mid
- 1

 else if
(A[mid] < value)

 low = mid
+ 1

 else
 return mid
 }

By jasondias
cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

i from 0 to n = (a

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445523925_Screen Shot 2015-10-22 at 10.25.11 AM.png
/uploads/jasondias_1445529071_camera_capture.jpg
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Binary Search (cont)

 return not_found
// value would be

inserted at index " low "
 }

Invari ants:
value > A[i] for all i <

low value < A[i] for all

i > high

Worst case perfor mance: O(log
n)
Best case perfor mance: O(1)
Average case perfor mance:
O(log n)

Binary Search (Recur sive)

int bsearch(int[] A, int

i, int j, int x) {

if (i<j) {

int e = [(i+j)/2];

if (A[e] > x) {

return bsearc h(A ,i, e-1);
} else if (A[e] < x) {

return

bsearc h(A ,e+ 1,j);
} else {

return e;

}

} else { return -1; }

}

Time Comple xity: log(ba se2)(n)

Insertion Sort (Itera tive)

For i ← 1 to length(A) -

1

 j ← i

 while j > 0 and A[j-1]
> A[j]

 swap A[j] and A[j-1]

 j ← j - 1

 end while

end for

Time comple xity: O(n)

Merge- the n-sort

Algorithm

ListIntersection (A,m,

B,n)

Input: Same as before

Output: Same as before

inter ← 0

Array C[m+n];

for i ← 0 to m-1 do C[i]

← A[i];

for i ← 0 to n-1 do C[

i+m] ← B[i];

C ← sort(C, m+n);

ptr ← 0

while (ptr < m+n-1) do

{

 if (C[ptr] = C[ptr+1]

) then {

 inter ← inter+1
 ptr ← ptr+2

 }

 else ptr ← ptr+1

}

return inter

Time Comple xity: (m+n) *
(élog(m+n)ù) + m + n -1

MergeSort (Recur sive)

MergeSort (A, p, r) //

sort A[p..r] by divide &

conquer

if p < r

 then q ← ⎣(p+r)/2⎦
 Mer geSort (A, p,
q)

 Mer geSort (A, q+1,
r)

 Merge (A, p, q, r)

Time Comple xity: 2T(n/2) + k • n
+ c’

Primitive Operations

assignment

calling method

returning from method

arithmetic

compar isons of primitive types

condit ional

indexing into array

following object reference

Assume each primitive operation holds the
same value = 1 primitive operation

Prove Big - Oh

By jasondias
cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

2

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445524538_camera_capture.jpg
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

	COMP250 Cheat Sheet - Page 1
	Algorithms
	QuickSort
	Proofs by Induction (Examples)
	QuickSort
	Loop Invariants
	Running Time
	In Place Sorting

	COMP250 Cheat Sheet - Page 2
	Object Orientated Programming
	Limitations of Arrays
	BIG O Definition
	ADT: Queues
	Recursion Programming
	Big O Visualization
	Big O Recurrence
	BinarySearch
	Divide & Conquer
	ATD: Stacks

	COMP250 Cheat Sheet - Page 3
	Merge-then-sort
	Primitive Operations
	Prove Big - Oh
	BinarySearch (Recursive)
	MergeSort (Recursive)
	Insertion Sort (Iterative)

