Cheatography

Definition ~ unambiguous
procedure executed
in a finite number of
steps

What Correctness, Speed,

makes a Space, Simplicity

good

algorithm?

Speed: time it takes to solve
problem

Space: amount of memory
required

Simplicity: easy to understand,

easy to implement,
easy to debug,
modify, update

Running Time

Definition measurement of the
speed of an
algorithm

Dependent size of input &

variables: content of input

Best Case: timeon meaningl
the €SS
easiest
input of
fixed
size

Average timeon good

Case: average measure,
input hard to

calculate

By jasondias

cheatography.com/jasondias/

COMP250 Cheat Sheet

Running Time (cont)
Worst time on good for safety
Case: most critical systems, easy
difficult to estimate
input

Proofs by Induction (Examples)

n-(n+l)

Claim: foranyn=1, 1+2+3+4+---+n=

Proof:

* Base case:

* Induction step:

foranyk =1,

if 1+2+3+4+»--+k=@

then 1+2+3+4+<--+k+(k+1)=w

Loop Invariants

Definition loop property that holds before
and after every iteration of a
loop.

Steps:

1. If it is true prior to the iteration of

Initializati the loop

on

2. If it is true before an iteration of

Maintena the loop, it remains true before

nce the next iteration

3. When the loop terminates, the

Terminati invariant gives us a useful

on property that helps show the

algorithm is correct

Published 20th October, 2015.

Page 1 of 3.

by jasondias via cheatography.com/21209/cs/5468/

Divide: choose an element
of the array for

pivot

divide into 3 sub-
groups; those
smaller, those
larger and those
equal to pivot

Conquer recursively sort

each group

Combine concatenate the 3

lists

Algorithm partition (A,
start, stop)
Input: An array A,
indices start and
stop.
Output: Returns an
index j and rearranges
the elements of A

such that for all i<j,
and

A[i] ! A[7]

for all k>i, A[k] "
Al3].

pivot # Al[stopl
left # start

right # stop - 1

while left ! right do
while left ! right and
Af[left] ! pivot) do

left # left + 1
while (left ! right
and A[right] " pivot)
do right # right -1
if (left < right)

then exchange A[left] $

Alright]

QuickSort (cont)

exchange Alstop] $
Alleft]

return left

Time Complexities:

» Worse case:

— Already sorted array (either
increasing or decreasing)
—T(n)=T(n-1) +cn+d

—T(n) is O(n2)

« Average case: If the array is in
random order, the

pivot splits the array in roughly
equal parts, so the

average running time is O(n log
n)

 Advantage over mergeSort:

— constant hidden in O(n log n)
are smaller for quickSort.

Thus it is faster by a constant
factor

— QuickSort is easy to do “in-
place”

In Place Sorting

Definition: Uses only a
constant amount
of memory in
addition of that
used to store the

input

Importance Great for large
data sets that
take up large
amounts of

memory

Examples: Selection Sort,
Insertion Sort
(Only moving
elements around

the array)

MergeSort: Not in place: new

array required

Last updated 22nd October, 2015.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445380086_Screen Shot 2015-10-20 at 6.28.15 PM.png
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

Cheatography

Object Orientated
Programming

COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Divide & Conquer (cont)

the solutions to create a solution
to the original problem

BIG O Definition

f(n) & g(n) are two non negative functions

defined on the natural numbers N

Combine

Definition: User defined types

to complement

primitive types

Called a class
Contains: Data & methods
Static members shared f(n) is
members: by all objects of the O(g(n)) if

class and only

Recursion Programming

Definition using methods that
call themselves

Structure:

base a simple

case occurrence that can
be answered
directly

recursive A more complex

case occurrence of the

problem that
cannot be directly
answered, but can
instead be
described in terms
of smaller
occurrences of the
same problem.

Divide & Conquer

Divide the problem into sub
problems that are
similar to the
original but smaller
in size

Conquer the sub-problems
by solving them
recursively. If they
are small enough,
solve them in a
straightforward

manner

if:

there exists an integer n0 and a
real number ¢ such that Vny=
no f(n) <=c * g(n)

N.B. The constant ¢ must not
depend on n

Big O Visualization

Intuition and visualization
+ “f(n)is O(g(n)” if there exists a point n
beyond which f(n) is less than some fixed
constant times g(n) &)

Forallnzn,
fmscegm) (fore=1)

[Epi s

Sum of d from0ton = (a(n+1) -1)/(a-1)

Limitations of Arrays
Size has to be known in
advance

memory required may be larger
than number of elements

inserting or deleting an element
takes up to O(n)

ADT: Queues

FIFO(First in first out)

Any first come first serve

service

Operations enqueue() - add
to rear
dequeue() -

removes object at
front

front() - returns
object at front

size() - returns
number of objects
O(n)

isEmpty() -
returns true if
empty

Double Ended Queues(deque):
Allows for insertions and
removals from front and back

- By adding reference to
previous node - removals occur
in O(1)

Def: Operations allowed at
only one end of the
list (top)

LIFO: (Last in first out)

Operat push() - inserts

jons: element at top

pop() - removes
object at top

ATD: Stacks (cont)

top() - returns top
element without
removing it

size() - returns number
of elements

isEmpty() - returns
True if empty

Applica page visited history in
tions web browser
JVM - keeps track of
chain of active
elements (allows for
rec)
Perfor- space used: O(n)
mance:
operations: O(1)
Limitati max size must be
ons defined prior

pushing to a full stack
causes
implementation
specific error

BinarySearch

BinarySearch(A[0..N-1],

value) {
low = 0
high = N - 1

while (low <=

high) {
mid = (low +
high) / 2
if (A[mid] >
value)
high = mid
1
else if
(A[mid] < value)
low = mid
+ 1
else

return mid

By jasondias

cheatography.com/jasondias/

Published 20th October, 2015.
Last updated 22nd October, 2015.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445523925_Screen Shot 2015-10-22 at 10.25.11 AM.png
/uploads/jasondias_1445529071_camera_capture.jpg
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

ratography

BinarySearch (cont)

return not_found
// value would be
inserted at index "low"

}

Invariants:
value > A[i] for all i <

low value < A[i] for all

i > high

Worst case performance: O(log
n)

Best case performance: O(1)
Average case performance:
O(log n)

BinarySearch (Recursive)

int bsearch(int[] A, int

i, int j, int x) {

if (i<j) {
[(i+3)/2];

(afe]l > x) {

int e =
if
return bsearch(a,i,e-1);
} else if (Ale]l < x) {
return
bsearch (A, e+l,3) ;

} else {

return e;

}

} else { return -1; }

}

Time Complexity: log(base2)(n)

Insertion Sort (lterative)

For i « 1 to length(a) -
1

j o« 1

while j > 0 and A[j-1]
> A[j]

swap A[j] and A[j-1]
j<3 -1
end while

end for

Time complexity: O(n2)

By jasondias

cheatography.com/jasondias/

Merge-then-sort

Algorithm

ListIntersection (A,m,

B,n)
Input: Same as before
Output: Same as before

inter « 0
Array C[m+n];

for 1 « 0 to m-1 do CI[i]
< A[il;

for 1 « 0 to n-1 do CI[
itm] < B[i];
C « sort(C, m+tn);
ptr « 0
while (ptr < mtn-1) do
{
if (Clptr] = Clptr+1]
) then {

inter « inter+l

ptr « ptr+2

}

else ptr « ptr+l
}

return inter

Time Complexity: (m+n) *
(og(m+n)T) + m + n -1

MergeSort (Recursive)

//

sort Alp..r] by divide &

MergeSort (A, p, r)
congquer
if p < r

then q « | (p+r)/2]

MergeSort (A, p,
MergeSort (A, g+1,
r)

Merge (A, p, q,

Time Complexity: 2T(n/2) + k * n
+C

Published 20th October, 2015.
Last updated 22nd October, 2015.

Page 3 of 3.

COMP250 Cheat Sheet
by jasondias via cheatography.com/21209/cs/5468/

Primitive Operations

assignment

calling method

returning from method
arithmetic

comparisons of primitive types
conditional

indexing into array

following object reference

Assume each primitive operation holds the
same value = 1 primitive operation

Prove Big - Oh

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/jasondias/
http://www.cheatography.com/jasondias/cheat-sheets/comp250
/uploads/jasondias_1445524538_camera_capture.jpg
http://www.cheatography.com/jasondias/
http://crosswordcheats.com

	COMP250 Cheat Sheet - Page 1
	Algorithms
	QuickSort
	Proofs by Induction (Examples)
	QuickSort
	Loop Invariants
	Running Time
	In Place Sorting

	COMP250 Cheat Sheet - Page 2
	Object Orientated Progra­mming
	Limita­tions of Arrays
	BIG O Definition
	ADT: Queues
	Recursion Progra­mming
	Big O Visual­ization
	Big O Recurrence
	Binary­Search
	Divide & Conquer
	ATD: Stacks

	COMP250 Cheat Sheet - Page 3
	Merge-­the­n-sort
	Primitive Operations
	Prove Big - Oh
	Binary­Search (Recur­sive)
	MergeSort (Recur­sive)
	Insertion Sort (Itera­tive)

