

General Chemistry I UIUC Cheat Sheet by jash24 via cheatography.com/20424/cs/8784/

Lewis Structures				Lewis Structure Info	Concepts		Concepts	
Molecular Geometries A = central atom; X = ligands; E = lone pairs Electron			airs	Key Structure Terms Valence Shell: Electrons in the outermost shell that are involved in bonding. Lewis Structure: A 2D representation of a molecule and its bonds. Lone Pair: Pair of electrons not being shared in a bond.	State Function Extensive	Energy, Entropy, Enthalpy Heat of a	Formatio n of a bond Breaking	Exothermic Endothermic
3	AX ₃ (BF ₃ , CO ₃ ²⁻ , NO ₃ ⁻ , SO ₃)	Trigonal Planar Bent	•••	Bonding Pair: Pair of electrons used to make a bond. Both atoms sharing the electrons can "count" them in their valence shell. Single bond: One pair of shared electrons. Double bond: Two pairs of shared electrons. Shorter and stronger than a single bond.	Property Intensive Property	reaction Temperature	of a bond Triple Bond	strongest but
4	(NO ₂ -, SO ₂ , O ₃) AX ₄ (CH ₄ , NH ₄ +, PO ₄ ³⁻ , SO ₄ ²⁻ ,	Tetrahedron		Triple bond: Three pairs of shared electrons. Shorter and stronger than a double bond. Valence Shell Electron Pair Repulsion Theory (VSEPR): Bonds and lone pairs are electrons, all electrons are negative, negative things repel other negative things, therefore all bonds and lone pairs arrange themselves in 3D	products are at a	W is negative	Single Bond	weakest but longest
5	ClO ₄ ') AX ₃ E (NH ₃ , H ₃ O ⁺ , PCl ₃ , SO ₃ ²⁻) AX ₂ E ₂ (H ₂ O, ClO ₂ ⁻ , OF ₂ , SCl ₂) AX ₃	Trigonal pyramidal Bent Trigonal bipyramidal	1	as far away from each other as possible. • Electron Geometry: 3D structure of a molecule determined by counting the electron regions around a central atom (bonds and lone pairs). • Electron Region: Each bond (single, double or triple) and lone pair count as "1" electron region. • Molecular Geometry: 3D structure determined by the atoms bonded to the central atom. • Ligand: Atoms bonded to the central atom.	higher temp, heat flows out of system		Periodic Trend	As the ions get bigger (down a group) the distance between them does as well and the magnitude of the lattice energy decreases which means that less energy is released when the lattice forms.
	(PCI ₅) AX ₄ E (SF ₄ , SCI ₄) AX ₃ E ₂	See-saw T-shaped	4	VSEPR Theory and Geometry Electron geometry is determined by looking at the number of electron regions around the central atom. Molecular geometry is determined by looking at the number of atoms bonded to the central atom (ligand) and the number of lone pairs around the central atom. Electronic Geometry Mnemonic: Linear(2) - Trigonal Planar(3) - Tetrahedral (4) - Trigonal Bipyramidal(5) - Qctahedron(6) = "Long Trip To TriBe Querseas." Examples: H Electron geometry: Tetrahedron Molecular geometry: Tetrahedron Molecular geometry: Tetrahedron Molecular geometry: Tetrahedron Molecular geometry: Tetrahedron Molecular geometry: Tetrahedron Molecular geometry: Tetrahedron	If the volume increases during the reaction, the system does work			
6	(CIF ₃ , ICI ₃) AX ₂ E ₃ (XeF ₂ , I ₃) AX ₆ (SF ₆ , PCI ₆)	Linear Octahedron Square	*					
	(BrF ₅ , IF ₅) AX ₄ E ₂ (XeF ₄)	pyramidal Square planar	*		Phase Change	7 times more energy needed to convert liquid water to	If reaction is reversed,	K' = 1/K
	Geometry = Secondary =					steam than ice to liquid water because of hydrogen bonding. Specific Heat capacity for liquid water is higher than that of ice and steam.	equilibriu m constant:	

By jash24

cheatography.com/jash24/

Not published yet.

Last updated 5th August, 2016.

Page 1 of 2.

Sponsored by **Readability-Score.com**Measure your website readability!

https://readability-score.con

General Chemistry I UIUC Cheat Sheet by jash24 via cheatography.com/20424/cs/8784/

Concepts (cont)						
If reaction is multiplied by m, the new equilibrium constant:	K'' = K^m					
Q <ksp< td=""><td>No precipitate; shift right</td></ksp<>	No precipitate; shift right					
Q = Ksp	Saturated Solution					
Q>Ksp	Precipitate Formed					

Lewis Structure Info+Other B and Be often have fewer than eight electrons Period 3 and heavier elements often satisfy, but can exceed the octet rule using their empty d orbitals Copper Config [Ar]:4s1 3d10 Chromium Config [Ar]: 4s1 3d5

By jash24 cheatography.com/jash24/

Not published yet. Last updated 5th August, 2016. Page 2 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com