\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Jalena Tati} \pdfinfo{ /Title (geometry-exam.pdf) /Creator (Cheatography) /Author (Jalena Tati) /Subject (Geometry Exam Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{ED24AA} \definecolor{LightBackground}{HTML}{FDF1F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Geometry Exam Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Jalena Tati} via \textcolor{DarkBackground}{\uline{cheatography.com/32648/cs/10082/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Jalena Tati \\ \uline{cheatography.com/jalena-tati} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 6th December, 2016.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{All Formulas}} \tn % Row 0 \SetRowColor{LightBackground} Interior Angles: & Sum of the measures of interior angles of a triangle = 180 \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Exterior Angle of a Triangle: & m∠1= m∠A+m∠B \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Exterior Angles: & Sum of the measure of exterior angles of a convex polygon = 360 \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} Given Point: & A(x1,y1) and B(x2,y2) \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} Midpoint: & (x1+x2/2, y1+x1/2) \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{Distance Formula:} \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} Slope & rise/run= y2-y1/x2-x1 \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} Slope- Intercept form of linear equation with slope m and y-intercept b: & y=mx+b \tn % Row Count 19 (+ 4) % Row 8 \SetRowColor{LightBackground} Zero slope: & Horizontal \tn % Row Count 20 (+ 1) % Row 9 \SetRowColor{white} Negative slope: & Goes down left to right \tn % Row Count 22 (+ 2) % Row 10 \SetRowColor{LightBackground} Positive slope: & Rises left from to the right \tn % Row Count 24 (+ 2) % Row 11 \SetRowColor{white} Undefined Slope: & vertical slope of parallel lines: same slope. Slope of perpendicular lines: m1. m2=-1 : write an equation from the graph then fin the slope \& y value. \tn % Row Count 32 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Symbols}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{AB - Line AB} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Ab - Segment AB} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{AB - Ray AB} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{≅ - Congruent} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{∠ABC - Angle ABC} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{m∠A - Measure of angle A} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{|- Perpendicular to} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{|| - Parallel to} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{m - Slope} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Δ ABC - Triangle ABC} \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{\textless{} - Is less than} \tn % Row Count 11 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\textgreater{} - Is greater than} \tn % Row Count 12 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{≠- Is not equal to} \tn % Row Count 13 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{≅ - Is not congruent to} \tn % Row Count 14 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{All Properties:}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Addition Property of Equality - A=B then A+C= B+C} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Subtraction Property of Equality -} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Multiplication Property of Equality -} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Devision Property of Equality -} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Reflexive Property of Equality - A=A; AB=AB} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Reflexive Property of Congruence - AB=(C); CD=AB} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Transitive Property of Equality - A=B; B=C; then A=C} \tn % Row Count 8 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Transitive Property of Congruence - A=(C) B B=C; then A=(C) C} \tn % Row Count 10 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Substitution Property - If A=B then A can be substituted for B} \tn % Row Count 12 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Distrubutive Property - A(B+C)= AB+AC} \tn % Row Count 13 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Symmetric Property of Equality -If AB=CD, then CD=AB} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.68217 cm} x{1.75083 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{More Angles}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Acute,} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{Right,} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Obtuse} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{Straight angles} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Complementary} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{Adjacent} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Supplementary} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{Medians} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Altitudes} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} Scalene & No congruent sides \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} Equalateral Triangle & All sides are congruent \tn % Row Count 12 (+ 2) % Row 11 \SetRowColor{white} Isosceles Triangle & 2 congruent sides \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.16722 cm} x{2.26578 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3.1}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Corresponding} Angles: & When they have corresponding positions \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Alternate Interior: & If they lie between the two lines and on opposite sides of the transversal \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} Alternate Exterior: & If they lie outside the two lines and on opposite sides of the transversal \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} Consecutive Interior: & If they lie between the two lines and on the same side of the transversal \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{All Angle/Triangle Info + Extra Vocab}} \tn % Row 0 \SetRowColor{LightBackground} Acute Angle: & An angle between 0 and 90 degrees. \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Acute Triangle: & Triangle with three acute angles \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{Adjacent Angles:} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} Altitude of a Triangle & The perpendicular segment from one vertex of the triangle to the opposite side/ to the line that contains the opposite side. \tn % Row Count 12 (+ 7) % Row 4 \SetRowColor{LightBackground} Angle: & Has two different rays with the same endpoint. Rays- Sides of the angle. Endpoint- The vertex of the angle. \tn % Row Count 18 (+ 6) % Row 5 \SetRowColor{white} Angle Bisector: & A ray that divides an angle into two angles that are ≅. \tn % Row Count 21 (+ 3) % Row 6 \SetRowColor{LightBackground} Between: & When 3 points lie on a line, you can say that one point is between the other two \tn % Row Count 25 (+ 4) % Row 7 \SetRowColor{white} Bioconditional Statement: & A statement that contains the phrase "if and only if" \tn % Row Count 28 (+ 3) % Row 8 \SetRowColor{LightBackground} Centroid of a Triangle: & The point of concurrency of the three medians of the triangle. \tn % Row Count 32 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{All Angle/Triangle Info + Extra Vocab (cont)}} \tn % Row 9 \SetRowColor{LightBackground} Circumference: & Distance around a circle \tn % Row Count 2 (+ 2) % Row 10 \SetRowColor{white} Collinear Points: & Points that lie on the same line \tn % Row Count 4 (+ 2) % Row 11 \SetRowColor{LightBackground} Complementary Angles: & Two angles whose measures have the sum 90. The sum of the measures of an angle and its complement is 90. \tn % Row Count 10 (+ 6) % Row 12 \SetRowColor{white} Conditional Statement & A type of logical statement that has two parts- Hypothesis + Conclusion... ex: If m∠A=90, then ∠A is a right angle. \tn % Row Count 16 (+ 6) % Row 13 \SetRowColor{LightBackground} Congruency transformation/ Isometry & 1- Translation. 2- Reflections, 3-Rotations \tn % Row Count 19 (+ 3) % Row 14 \SetRowColor{white} Conjecture: & An unproven statement that is based on observation... ex: all prime numbers are odd \tn % Row Count 24 (+ 5) % Row 15 \SetRowColor{LightBackground} Contrapositive: & The equivalent statement formed by negating the hypothesis and conclusion of the converse of a conditional statement. \tn % Row Count 30 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{All Angle/Triangle Info + Extra Vocab (cont)}} \tn % Row 16 \SetRowColor{LightBackground} Convex Polygon, Concave & A Polygon that is not convex is non-convex/concave. Convex Polygons = No "dents", Has a "dent" or "dents" \tn % Row Count 6 (+ 6) % Row 17 \SetRowColor{white} Coplanar points & Points that lie in the same plane \tn % Row Count 8 (+ 2) % Row 18 \SetRowColor{LightBackground} Equiangular Polygon, Equilateral,polygon, Equilateral triangle,isosceles, & Three congruent sides, all of its sides congruent, three congruent sides, at least 2 congruent sides \tn % Row Count 13 (+ 5) % Row 19 \SetRowColor{white} Heptagon, Hexagon, Pentagon & Polygon with 7 sides, 6 sides, 5 sides, \tn % Row Count 15 (+ 2) % Row 20 \SetRowColor{LightBackground} Hypotenuse & The side of the opposite the right angle. \tn % Row Count 18 (+ 3) % Row 21 \SetRowColor{white} Skew lines & Lines that don't intersect + are NOT coplanar \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{All Postulates}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Ruler "Postulate" - The points on a line can be matched one to one with the real numbers.The real number number that corresponds to a point is the coordinate of the point.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Segment Addition " - If B is between A \& C, then AB+BC=AC. If AB+BC=AC then B is between A \& C} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Protractor " - The measure of ∠AOB is equal to the the absolute value of the difference between the real numbers for OA \& OB.} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Segment Addition "- If B is between A \& C, then AB + BC= AC. If AB+BC=AC, then B is between A \& C} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Angle Addition " - If P is in the interior of ∠RST, then m∠RST= m∠RSP+ m∠PST.} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{5 - Through any two point there exists exactly one line} \tn % Row Count 15 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{6 - A line contains at least two points} \tn % Row Count 16 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{7 -If two lines intersect, then their intersection is exactly at one point.} \tn % Row Count 18 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{8 - Through any three noncollinear points there exists exactly one plane} \tn % Row Count 20 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{9 - A plane contains at least three noncollinear points} \tn % Row Count 22 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{10 - If two point lie in a plane, then the line containing them lies in the plane} \tn % Row Count 24 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{11 -If two planes intersect, then their intersection is a line} \tn % Row Count 26 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{12 - Linear pair " - If two angles form a linear pair, then they are supplementary.} \tn % Row Count 28 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Corresponding Angles Postulate \& its Converse- "If two parallel lines are cut by a transversal", then the pairs of corresponding angles are ≅. " " so the corresponding angles are ≅, then the lines are ||.} \tn % Row Count 33 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{All Postulates (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Slopes of Parallel "Lines" - In a coordinate plane two nonvertical lines are parallel if \& only if they have the same slope. Any 2 vertical lines are ||.} \tn % Row Count 4 (+ 4) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Slopes of perpendicular " " - In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Horizontal lines are perpendicular to vertical lines} \tn % Row Count 8 (+ 4) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{SSS "Congruence Postulate" -If 3 sides of a triangle are congruent to 3 sides of another triangle, then they are congruent} \tn % Row Count 11 (+ 3) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{SAS " -If 2 sides and 1 included angle of a triangle are congruent to the 2 sides and angle of another triangle, then they are congruent} \tn % Row Count 14 (+ 3) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{ASA " -If 2 angles and an included side of a triangle are congruent to 2 angles and included side of another triangle, then they are congruent} \tn % Row Count 17 (+ 3) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{AA Similarity "-If 2 angles of one triangle are congruent to 2 angles of another triangle, then they are similar} \tn % Row Count 20 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{All Theorems}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Right Angles Congruence "Theorem"-} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Congruent Supplements "-} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Congruent Complements " -} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Vertical Angles ≅ "-} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Alternate Interior Angles " -} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{\textasciicircum{} Exterior Angles " -} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Consecutive Interior Angles " -} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Alternate Interior Angles Converse -} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{\textasciicircum{} Exterior Angles Converse -} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Consecutive Interior Angle Converse -} \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Transitive Property of Parallel Lines -} \tn % Row Count 11 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Perpendicular Transversal-} \tn % Row Count 12 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Lines Perpendicular to a Transversal-} \tn % Row Count 13 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Triangle Sum -} \tn % Row Count 14 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Corollary -} \tn % Row Count 15 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Exterior Angle-} \tn % Row Count 16 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Third Angles-} \tn % Row Count 17 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Hypotenuse Leg Congruence-} \tn % Row Count 18 (+ 1) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{AAS Congruence-} \tn % Row Count 19 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Base Angles-} \tn % Row Count 20 (+ 1) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Corollary -} \tn % Row Count 21 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Converse of the Base Angle -} \tn % Row Count 22 (+ 1) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Midsegment -} \tn % Row Count 23 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Perpendicular Bisector -} \tn % Row Count 24 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Converse of the Perpendicular Bisector -} \tn % Row Count 25 (+ 1) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Angle Bisector -} \tn % Row Count 26 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}