Cheatography

Geometry Exam Cheat Sheet by Jalena Tati via cheatography.com/32648/cs/10082/

All Formulas		All Formulas (cont)		All Properties: (cont)		Chapter	Chapter 3.1 (cont)	
Interior Angles:	Sum of the measures of interior angles of a triangle = 180	Undefined Slope:			B=C; then A=(C) C n Property - If A=B then ubstituted for B	Consec utive Interior:	If they lie between the two lines and on the same side of the transversal	
Exterior Angle of a Triangle:	m∠1= m∠A+m∠B		equation from the graph then fin the slope & y value.	AB+AC	e Property - A(B+C)=	All Angle Vocab	e/Triangle Info + Extra	
Exterior Angles:	Sum of the measure of exterior angles of a convex polygon = 360	Symbols			en CD=AB	Acute Angle:	An angle between 0 and 90 degrees.	
		AB - Line AB		More Ang Acute,	More Angles Acute,		Triangle with three acute angles	
Given Point:	A(x1,y1) and B(x2,y2)	Ab - Segme AB - Ray A	В	Right, Obtuse		Adjacent Altitude	Angles: The perpendicular segment from one vertex of the triangle to the opposite side/ to the	
Midpoint:	(x1+x2/2, y1+x1/2)	≅ - Congru ∠ABC - An	gle ABC	Straight ar	-	of a Triangle		
Distance Formula		m∠A - Measure of angle A		Adjacent	omplementary Ijacent		line that contains the opposite side.	
Slope	rise/run= y2- y1/x2-x1	- Parallel	arallel to Supplementary		ntary	Angle:	Has two different rays	
Slope- Intercept form of linear equation with slope m and y-	y=mx+b	m - Slope Δ ABC - Tri	iangle ABC	Medians Altitudes			with the same endpoint. Rays- Sides of the angle. Endpoint- The vertex of the angle. A ray that divides an angle into two angles	
		< - Is less t		Scalene	No congruent sides			
intercept b: Zero slope:	Horizontal	> - Is greate≠- Is not eq		Equalatera Triangle	al All sides are congruent	Angle Bisector:		
Negative slope:	Goes down left to right	≅ - Is not c	ongruent to	lsosceles Triangle	2 congruent sides		that are ≅.	
Positive slope:	Rises left from to the right	All Properties: Addition Property of Equality - A=B then A+C= B+C Subtraction Property of Equality -		Chapter 3	1			
				Correspo	When they have			
				nding Angles:	corresponding			
		Multiplicatio	lultiplication Property of Equality -		positions			
		Devision Property of Equality - Reflexive Property of Equality - A=A; AB=AB		Alternate Interior:	If they lie between the two lines and on opposite sides of the transversal			
		Reflexive P AB=(C); CE	roperty of Congruence - D=AB	Alternate Exterior:	If they lie outside the two lines and on			
		Transitive F A=B; B=C;	Property of Equality - then A=C		opposite sides of the transversal			

By Jalena Tati

cheatography.com/jalena-tati/

Not published yet. Last updated 6th December, 2016. Page 1 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Geometry Exam Cheat Sheet by Jalena Tati via cheatography.com/32648/cs/10082/

All Angle/Triangle Info + Extra Vocab (cont)		All Angle/Triangle Info + Extra		All Angle/Triangle Info + Extra Vocab (cont)		All Postulates (cont)
Between:	When 3 points lie on	Vocab (cont) Congruency	- Translation. 2-	Heptagon, Polygon with 7		9 - A plane contains at least three noncollinear points
a line, you can say that one point is between the other	transformati on/ Isometry	Reflections, 3- Rotations	Hexagon, Pentagon Hypotenuse	sides, 6 sides, 5 sides, The side of the	10 - If two point lie in a plane, then the line containing them lies in the plane	
Bioconditio	two A statement that	Conjecture:	An unproven statement that is based on observation ex: all prime numbers are		opposite the right angle.	11 -If two planes intersect, then their intersection is a line
nal Statement: Centroid of	contains the phrase "if and only if" The point of			Skew lines	Lines that don't intersect + are NOT coplanar	12 - Linear pair " - If two angles form a linear pair, then they are supplementary.
a Triangle:	concurrency of the three medians of the triangle.	Contrapositi ve:	odd The equivalent statement formed by negating the hypothesis and conclusion of the converse of a	All Postulates		Corresponding Angles Postulate & its Converse- "If two parallel lines
Circumfere nce:	Distance around a circle			line can be ma	ate" - The points on a atched one to one numbers.The real	are cut by a transversal", then the pairs of corresponding angles are ≅. " " so the corresponding angles
Collinear Points:	Points that lie on the same line			number number that corresponds to a point is the coordinate of the		are ≅, then the lines are . Slopes of Parallel "Lines" - In a
Compleme	oleme Two angles whose	conditional statement.		point.		coordinate plane two nonvertical
ntary Angles:	measures have the sum 90. The sum of the measures of an	Convex Polygon, Concave	A Polygon that is not convex is non- convex/concave. Convex Polygons = No "dents", Has a "dent" or "dents"	Segment Addition " - If B is between A & C, then AB+BC=AC. If AB+BC=AC then B is between A & C		lines are parallel if & only if they have the same slope. Any 2 vertical lines are .
	angle and its complement is 90.					Slopes of perpendicular " " - In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Horizontal lines are perpendicular to vertical lines SSS "Congruence Postulate" -If 3 sides of a triangle are congruent to 3 sides of another triangle, then
Conditional	A type of logical			Protractor " - The measure of \angle AOB is equal to the the absolute value of the difference between the real numbers for OA & OB. Segment Addition "- If B is between A & C, then AB + BC= AC. If AB+BC=AC, then B is between A & C Angle Addition " - If P is in the interior of \angle RST, then m \angle RST= m \angle RSP+ m \angle PST. 5 - Through any two point there exists exactly one line 6 - A line contains at least two points		
Statement statement that has two parts-		Coplanar points	Points that lie in the same plane			
	Conclusion ex: If $m \angle A = 90$, then $\angle A$ is a right angle.	Equiangular Polygon, Equilateral,p olygon, Equilateral triangle,isos celes,	Three congruent sides, all of its sides congruent, three congruent sides, at least 2 congruent sides			
						they are congruent SAS " -If 2 sides and 1 included angle of a triangle are congruent to the 2 sides and angle of another triangle, then they are congruent
						ASA " -If 2 angles and an included side of a triangle are congruent to 2 angles and included side of another
					intersect, then their exactly at one point.	triangle, then they are congruent

8 - Through any three noncollinear points there exists exactly one plane

> Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By Jalena Tati

cheatography.com/jalena-tati/

Not published yet. Last updated 6th December, 2016. Page 2 of 3.

Cheatography

Geometry Exam Cheat Sheet by Jalena Tati via cheatography.com/32648/cs/10082/

All Postulates (cont)

AA Similarity "-If 2 angles of one triangle are congruent to 2 angles of another triangle, then they are similar

All Theorems				
Right Angles Congruence "Theorem"-				
Congruent Supplements "-				
Congruent Complements " -				
Vertical Angles ≅ "-				
Alternate Interior Angles " -				
^ Exterior Angles " -				
Consecutive Interior Angles " -				
Alternate Interior Angles Converse -				
^ Exterior Angles Converse -				
Consecutive Interior Angle Converse -				
Transitive Property of Parallel Lines -				
Perpendicular Transversal-				
Lines Perpendicular to a Transversal-				
Triangle Sum -				
Corollary -				
Exterior Angle-				
Third Angles-				
Hypotenuse Leg Congruence-				
AAS Congruence-				
Base Angles-				
Corollary -				
Converse of the Base Angle -				
Midsegment -				
Perpendicular Bisector -				
Converse of the Perpendicular Bisector -				
Angle Pisceter				

Angle Bisector -

By Jalena Tati

cheatography.com/jalena-tati/

Not published yet. Last updated 6th December, 2016. Page 3 of 3. Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com