Cheatography

Psych 2260 Cheat Sheet by jagglepop via cheatography.com/212492/cs/46171/

Ch. 3		Ch. 10
Correlation	Strength: small	Chi-Square Tests: Fo
Coefficient: # that	±.10 med ±.30	variable of interest is
tells degree of	large ±.50 r=[Σ(z _X)	The scores they ach
correlation (r)	(z _y)]/N-1	frequencies
Linear Correlation:	Line indicating	Frequencies: How m
relation is roughly a	straight line	vations fall into diff c
Curvilinear correlat	ion: Not Straight	Chi-Square Test for
Cross-product:	Cross-product Z	Chi-Square test invo
Multiplying a	score: Using z-	single nom vari
score on one	scores instead	Goodness of Fit:
variable by a		X2=∑(O-E)2/E
score on another		
Variables: predictor	is x and criterion is	
У		
Prediction Model:	$Z_V = (\beta)(Z_X)$	
Using z-scores to	y	df for X2 test: df=NC
make predict		Chi-Square T for Ind
Raw Score	Form 1: Predicted	Square test involving
Predict:	Y=a+(b)(x) Form	w/ several categories
	2: Predicted Y=	Independence: Refe
	(SDy)(Predicted	relation between 2 n
	Z _x)+M _v	Ind Means X2 Exped
Corrolation Matrix	Table of correlations	Makes # that rep cel
that's set up so eac		Figuring X2 for Ind:
down the left and a		goodness of fit but u
		each cell of the conti
Multiple Regres- sion: Making	,	df for X2 for Ind: df=
predictions w/	$(Z_{X2})+(\beta_3)(Z_{X3})$	ows-1)
multi correlations		For cutoff scores: us
		cutoff scores
:		Phi Coefficient(): Me
		of association betwe
		dichotomous nom va

Ch. 10		Ch. 10 (cont)		Ch. 3	
<i>Chi-Square Tests:</i> For when variable of interest is a norm The scores they achieve re- frequencies	inal vari.	Cramer's Phi: Extension of Phi, used when the contingency table	C=√X2/(N)(df- Smaller)	Correlation Coefficient: # that tells degree of correlation (r)	<i>Strength:</i> small ±.10 med ±.30 large ±.50
Frequencies: How many pp vations fall into diff categori Chi-Square Test for Goodm Chi-Square test involving le	es <i>ess of Fit:</i>	is larger than 2x2 AKA Cramer's V and denoted as C or Vc		Linear Correlation: Line is relation is roughly a strain Curvilinear correlation: N Cross-product: Multip-	ght line
single nom vari <i>Goodness of Fit:</i> X2=∑(O-E)2/E	**O- Observed Frequency E-	Data Transformation on each score is a s make samp dist clos Square-Root Transf the √ of each score i	amp, usuall done to eer to norm <i>formation:</i> Taking	lying a score on one variable by a score on another	product Z score: Using z-scores instead
df for X2 test: df=NCategor	Expected Frequency	the distribution close Log Transformation: of each score to mal	Taking a logarithm	Variables: predictor is x a y Prediction Model: Using make predict	
Chi-Square T for Independe Square test involving 2 varia w/ several categories	ables each	Rank-Order Transformation: Changing the set	<i>Rank-Order Test:</i> Hyp Test proc that uses rank-o-	Formulas	r=[Σ(z _x) (z _y)]/N-1Z _y =
Independence: Refers to a relation between 2 nom var Ind Means X2 Expected fre Makes # that rep cell E=(R/	quencies:	of scores to ranks so that the lowest score is 1, next lowest is 2 so on	rdered scores. Sometimes called dist-free tests/non-param-	:	(β)(Z _X)
Figuring X2 for Ind: It is the goodness of fit but uses score each cell of the contingency	ores from	Rank-Order Tests C Parametric Tests:	etric tests	Ch. 3 Correlation Coefficient: # that tells degree of correlation (r)	<i>Strength:</i> small ±.10 med ±.30
df for X2 for Ind: df=(NColu ows-1) For cutoff scores: use table cutoff scores Phi Coefficient(): Measure of association between to dichotomous nom vari.		Mann-Whitney U: Rank-order test U1=[(N1)(N2)]+[- N1(N1+1)/2)-∑R1 // U2=[(N1)(N2)]+ [N2(N2+1)/2)-∑R2	Where: U1/U2- U1 Stat N1/N2- Sample size of each group Σ R1/R2- Sum of rank orders for each condition	<i>Linear Correlation:</i> Line is relation is roughly a strait <i>Curvilinear correlation:</i> N <i>Cross-product:</i> Multip- lying a score on one variable by a score on	ght line
Effect size for a X2 for Ind w/ a 2x2 contingency table		$\dot{\sigma} \neq \Sigma$		another	z-scores instead

By jagglepop cheatography.com/jagglepop/ Not published yet. Last updated 23rd April, 2025. Page 1 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Psych 2260 Cheat Sheet by jagglepop via cheatography.com/212492/cs/46171/

		(
	- 1	(cont)
011.		

Variables: predictor is x and criterion is y Prediction Model: Using z-scores to make predict

 $r=[\Sigma(z_X)(z_V)]/N-1Z_V=(\beta)$ Formulas (Z_X)

Ch. 4

Inferential Statistics: Conclusions that go beyond the particular group of research participants studied

Normal curve/dis: Variables follow a unimodal, roughly symmetrical, bell-shaped dist

Central Limit Theorem: Principle that the distribution of the sums/means of scores taken at random from any dist. of indiv. will tend to form norm curve

Haphazard Selection: Picking for

convenience (le, whoever happens to be available)

Population Parameters: M, SD2 and SD of a pop

Sample Stats: M, SD2 and SD figured for scores in a sample

Relative Freq: # of	Probability:
times smt	p=Possible
happens relative	successful
to # it could	outcomes/All
happen	possible
	outcomes

Response rate: Proportion of individuals approached for the study who actually participated in the study

Ch. 5

Theory: Set o	f priciples that attempt to
explain 1+ fac	cts/relationships/events
Hypothesis	Step 1- Restate Question
testing	(research/null hypoth-
process:	eses?) Step 2-
	Determine chara of
	comparison distribution
	Step 3- Determine cutoff
	sample score Step 4-
	Determine samples score
	on the comparison distri-
	bution Step 5- Decide
	whether or not to
	accept/reject the null
	hypothesis
Comparison I	Distribution: Represents

the population situation if the null hypothesis is true

Meta-analysis: Combo of results from multiple diff studies

Directional Hypothesis: Study that focuses on a specific direction of effect

Decision Errors: Correct procedures leading to faulty results

Type I Error: Conclude the study supports research hypothesis when it is actually is false

Type II Error: Extreme p-value that leads to rejecting a null hypothesis that should actually be accepted

Not Significant: NS

Ch. 8

T test for independent means: using scores obtained from 2 sep groups that're indep of each other Distribution between means: comp dist used in a t test for ind M. We are not using diff scores and are instead comp 1 groups M to the other groups M Weighted Avg: An Pooled estimate of pop SD2: average weighted by the amount of info that each dftotal)(S12)]+-

S2Pooled=[(df1/-[(df2/dftotal)(-S22)]

SD2 of dist of diff between Ms⁻ For pop1: SM12=S2Pooled/N1 For pop2: SM22=S2Pooled/N2

SD2 of dist of diff S2Difference-=SM12+SM22 between Ms: S2Difference SD of the dist of SDifference= diff between Ms: √S2Difference SDifference

sample provides

Df for ttest for for ind M: dftotal=df1+df2 ttest for ind M: t=(M1-M2)/SDiffference

Hyp Test Proc: Find S12+S22->S2Pooled->SM12+SM22->S2Difference->SDifference->Cutoff->M1+M2->t

Effect Size for IndM T: Est Eff Size=(-M1-M2)/SPooled

Harmonic M: Gives equivalent sample size to groups that have equal group sizes (used for est eff size when group sizes aren't even) Harmonic M=[(2)(N1) (N2)]/(N1+N2)

Ch. 8 (cont)

t test shown in research: t(dftotal)=(tscore), p<.01

 $\sqrt{\sigma} \mu \Sigma$

Ch. 6

Distribution of Means	3 Chara of
(DoM): The distribution	DoM: 1. Its
of the means of each of	M 2. Its
many samples of = size	spread
and all randomly	(SD2+SD)
selected from the same	3. Its shape
population	
Rules: Rule 1- PopMm (N	VI of
DoM)=PopM (M of pop)	
SD2M=SD2/N Rule 2b- I	
SDM=√SD2M Rule 3- Th	•
DoM is approx norm if ei	
sample has 30+ part b) 1	,
pop of indiv is norm	
Z Test: The Z score that	is checked
against the normal curve	
0	
Effect Size: The amount	
that pops (exp and non	
exp) are separa-	exp group)-
ted/don't overlap	μ2 (M of
	known
	pop))/σ (SD
	of known
	pop)
d effect size: small 0 <d<< td=""><td>0.2 med</td></d<<>	0.2 med
0.2 <d<0.8 d="" large="">0.8</d<0.8>	
Type I Error: Rejecting th	ne null
hypothesis when the null hypothesis is	
actually true	
Type II Error: Accepting	the null
hypothesis when the null	hypothesis is
false, aka beta error	
Type III Error: Concludin	a that there is

Type III Error: Concluding that there is a sig diff in one direction when the true effect is in the other direction

By jagglepop cheatography.com/jagglepop/

Not published yet. Last updated 23rd April, 2025. Page 2 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Psych 2260 Cheat Sheet by jagglepop via cheatography.com/212492/cs/46171/

Ch. 6 (cont)

Statistical Power: Likelihood that a study will correctly detect a real treatment effect. In other words, the stat pow is the likelihood that the study will correctly reject a null hypothesis

Hypothesis testing steps: Step 1-Develop Hypothesis ie- H0: µ1≤µ2 H1: µ>µ2 Step 2- Determine chara of comp pop σM=σ/√N Step 3- Determine cutoff score Step 4- Determine samples score on the comp dist Z=(M-µM)/σM Step 5: Decide whether to reject or accept the null hypothesis

Power Distribution Steps: Step 1: Turn Z cutoff score into raw score M=(Z)(σM)+µM Step 2: Figure the zscore for the cuttoff M, Z=(M- μ M)/(σ M) Step 3: Use Table A-1 to determine prob of getting the resulting score from step 2 Power=1-beta

. √ σ μ

T Tests: Hyp test procedures where pop SD2 is unknown(Aka students t)

1 sample t test: scores from one sample where the comp pop has a known M but unknown SD2

Ch. 7 (cont)	
<i>1 samp t hyp test:</i> In	Degrees of
step 2 we have to	Freedom:df=n-
find the unbiased	1
estimate of the pop	
SD2 S2=[∑(X-	
M)2]/df, in step 3 we	
use table A-2 instead	
and for step 4 we	
need to calculate a t-	
score t=(M-Pop	
M)/SM to compare	
against our cutoff	
score	
Repeated-Measures des	<i>sign:</i> Research

rch situation where 2 scores are taken from each person in the sample (within-subjects design)

est for dependent	For the t test
<i>eans:</i> Each person	for dep M,
as 2 scores, we use	calculate diff
ff scores for the	scores before
articipants (1 score-	doing hyp test
e other) and we	

assume pop M is 0

Est. Effect Size (for t test w dep M). Mean of diff scores/sd of pop of diff scores Est Eff Size=M/S

$i \sqrt{\sigma} \mu \Sigma$

t te

m

ha

dif

ра

the

Ch. 9	
ANOVA: Stat	The null hyp for
procedurefor	anova is that the
testing SD2	several pops being
among the Ms	compared have the
of >2 groups	same M

Ch. 9 (cont)

Within-group est of the pop SD2: Avging pop SD2 est from each sample into a single pooled est. Gives an avg of est figured entirely from the scores within each of the samp

Between-group est of the pop SD2: Est of the SD2 in each pop from the SD2 among the Ms of the samples

Treatment effect: Diff treatment received by the groups causes the groups to have diff Ms

F Ratio: The between-groups est divided by the within-groups est

F Distribution: Math defined curve that is the comp dist used in an ANOVA

Before testing, find M and S2 for each group of part

Within-groups SD2 est: S2Within=(S1-2+S22+...Slast2)/NGroups

Grand M: The overall M of all our scores GM=∑M/NGroups

Est of SD2 of the Dist of Ms: SM2=[∑-

(M-GM)2]/dfbetween

Comparison of fig the SD2 of a dist of Ms from the SD2 of a dist of indiv: from dist of indiv->dist of M - S2M=S2/N dist of M->Dist of indiv - S2Between=(S2M) (N)

F Ratio: Ratio of between-group est of pop SD2 to the within-group est of pop SD2 F=S2Between/S2Within and use table A-3 for comp

```
Between-groups df: Numerator df
dfBetween=NGroups-1
```

Within-groups df: Denominator df

dfWithin=df1+df2+...dfLast

Hyp Test Proc: Find S2 + M for each group->S2Within->GM->dfBetween->dfWithin->S2M->S2Between->F

Ch. 9 (co	nt)	
Effect	R2=[(S2Between)(dfBet-	
size for	ween)]/[(S2Between)(dfBe-	
ANOVA:	tween)]+[(S2Within)(dfWi-	
R2	thin)]	
R2 Power	Meaning: small .01 med .06	
large .14		
Factorial A	NOVA: ANOVA for factorial	
research de	esign	
Interaction	Effect: X = interaction (effect	
of one varia	able impacts the results on	
the other)		
Two-way A	NOVA: Considers the effect	
of 2 variabl	es that separate groups	
Grouping V	/ariables/Ind Variables:	
Variables t	hat separate groups	
One-Way ANOVA: Consider the effect		
of only one	grouping	
Diff ANOV	A Means: Cell Ms- M of	
scores in e	ach cell Marginal Ms- M of 1	
grouping variable (vertical/horizontal		
grouping)		
Dependent	<i>Variable:</i> Represents the	
effect of the	e exper proc	
One-Way A	ANOVA in Research: Ftest(-	
dfBetween, dfWithin)=F ratio score,		
p<.01		
[:] √ σ μ ∑		

By jagglepop

cheatography.com/jagglepop/

Not published yet. Last updated 23rd April, 2025. Page 3 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com