Cheatography

Psych 2260 Cheat Sheet by jagglepop via cheatography.com/212492/cs/46171/

Ch. 3	
Correlation	Strength: small
Coefficient: # that	±.10 med ±.30
tells degree of	large $\pm .50 \text{ r=[}\Sigma(z_X)$
correlation (r)	(z _y)]/N-1
Linear Correlation: Line indicating	
relation is roughly a straight line	
Curvilinear correlation: Not Straight	
Cross-product:	Cross-product Z
Multiplying a	score: Using z-
score on one	scores instead
variable by a	
score on another	
Variables: predictor is x and criterion is	
у	
Prediction Model:	$Z_y = (\beta)(Z_x)$
Using z-scores to	
make predict	
Raw Score	Form 1: Predicted
Predict:	Y=a+(b)(x) Form

Correlation Matrix: Table of correlations that's set up so each variable is listed down the left and across the top ex.

2. Predicted Y=

(SD_V)(Predicted

 Z_X)+ M_Y

Multiple Regres-sion: Making $(Z_{x2})+(\beta_3)(Z_{x3})...$ predictions w/multi correlations

Ch. 10

Chi-Square Tests: For when the variable of interest is a nominal vari. The scores they achieve represent frequencies

Frequencies: How many ppl/observations fall into diff categories

Chi-Square Test for Goodness of Fit: Chi-Square test involving levels of a single nom vari

Goodness of Fit: **OX2= Σ (O-E)2/E Observed
Frequency
E-

Expected Frequency

df for X2 test: df=NCategories-1

Chi-Square T for Independence: Chi-Square test involving 2 variables each w/ several categories

Independence: Refers to a lack of a relation between 2 nom vari

Ind Means X2 Expected frequencies:
Makes # that rep cell E=(R/N)(C)

Figuring X2 for Ind: It is the same as goodness of fit but uses scores from each cell of the contingency table

df for X2 for Ind: df=(NColumns-1)(NR-

For cutoff scores: use table A4 to find cutoff scores

Phi Coefficient(): Measure =√X2/N
of association between to
dichotomous nom vari.

Effect size for a X2 for
Ind w/ a 2x2 contingency

Ch. 10 (cont)

Cramer's Phi:

Extension of Phi,
used when the
contingency table
is larger than 2x2

AKA Cramer's V
and denoted as C
or Vc

Data Transformation: Math proc used on each score is a samp, usuall done to make samp dist closer to norm

 $\label{eq:Square-Root Transformation:} Square-Root Transformation: Taking the \sqrt of each score in a sample to make the distribution closer to normal$

Log Transformation: Taking a logarithm of each score to make the samp dist closer to norm

Rank-Order Rank-Order Test:

Transformation: Hyp Test proc
Changing the set that uses rank-oof scores to ranks rdered scores.
so that the lowest Sometimes
score is 1, next called dist-free
lowest is 2... so on tests/non-parametric tests

Rank-Order Tests Corresponding to Parametric Tests:

Mann-Whitney U: Where: U1/U2-Rank-order test U1 Stat N1/N2-U1=[(N1)(N2)]+[- Sample size of N1(N1+1)/2)- Σ R1 each group // U2=[(N1)(N2)]+ Σ R1/R2- Sum of rank orders for each condition

:√σμ∑

Ch. 3

that tells degree of small ±.10 correlation (r) med ±.30 large ±.50

Linear Correlation: Line indicating relation is roughly a straight line

Curvilinear correlation: Not Straight

Cross-product: Multiplying a score on one product Z

variable by a score on score: Using another z-scores instead

Variables: predictor is x and criterion is

Prediction Model: Using z-scores to make predict

Formulas $\begin{matrix} r=[\Sigma(z_X)\\ (z_y)]/N-1Z_y=\\ (\beta)(Z_X) \end{matrix}$

:

Ch. 3

that tells degree of small ±.10 correlation (r) med ±.30 large ±.50

Linear Correlation: Line indicating relation is roughly a straight line

Curvilinear correlation: Not Straight

Cross-product: Multiplying a score on one variable by a score on another

product Z
score: Using
z-scores

instead

Cross--

By jagglepop cheatography.com/jagglepop/

table

Not published yet. Last updated 23rd April, 2025. Page 1 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Psych 2260 Cheat Sheet by jagglepop via cheatography.com/212492/cs/46171/

Ch. 3 (cont)

Variables: predictor is x and criterion is

Prediction Model: Using z-scores to make predict

Formulas $r=[\Sigma(z_X)(z_y)]/N-1Z_y=(\beta)$ (Z_X)

:

Ch. 4

Inferential Statistics: Conclusions that go beyond the particular group of research participants studied

Normal curve/dis: Variables follow a unimodal, roughly symmetrical, bell-shaped dist

Central Limit Theorem: Principle that the distribution of the sums/means of scores taken at random from any dist. of indiv. will tend to form norm curve

Haphazard Selection: Picking for convenience (Ie, whoever happens to be available)

Population Parameters: M, SD2 and SD of a non

Sample Stats: M, SD2 and SD figured for scores in a sample

Relative Freq: # of times smt happens relative to # it could happen Probability:
p=Possible
successful
outcomes/All
possible
outcomes

Response rate: Proportion of individuals approached for the study who actually participated in the study

Ch. 5

Theory: Set of priciples that attempt to explain 1+ facts/relationships/events

Hypothesis testing process:

Step 1- Restate Question (research/null hypoth-eses?) Step 2Determine chara of comparison distribution
Step 3- Determine cutoff sample score Step 4Determine samples score on the comparison distribution Step 5- Decide whether or not to accept/reject the null hypothesis

Comparison Distribution: Represents the population situation if the null hypothesis is true

Meta-analysis: Combo of results from multiple diff studies

Directional Hypothesis: Study that focuses on a specific direction of effect

Decision Errors: Correct procedures leading to faulty results

Type I Error: Conclude the study supports research hypothesis when it is actually is false

Type II Error: Extreme p-value that leads to rejecting a null hypothesis that should actually be accepted

Not Significant: NS

Ch. 8

T test for independent means: using scores obtained from 2 sep groups that're indep of each other

Distribution between means: comp dist used in a t test for ind M. We are not using diff scores and are instead comp 1 groups M to the other groups M

Weighted Avg: An Pooled estimate
average weighted of pop SD2:
by the amount of S2Pooled=[(df1/info that each dftotal)(S12)]+sample provides [(df2/dftotal)(S22)]

SD2 of dist of diff between Ms: For pop1: SM12=S2Pooled/N1 For pop2: SM22=S2Pooled/N2

SD2 of dist of diff between Ms:

between Ms: =SM12+SM22
S2Difference

S2Difference-

SDifference=

√S2Difference

SD of the dist of diff between Ms:

SDifference

Df for ttest for for ind M: dftotal=df1+df2
ttest for ind M: t=(M1-M2)/SDiffference

Hyp Test Proc: Find S12+S22->S2Pooled->SM12+SM22->S2Difference->SDifference->Cutoff->M1+M2->t

Effect Size for IndM T: Est Eff Size=(-M1-M2)/SPooled

Harmonic M: Gives equivalent sample size to groups that have equal group sizes (used for est eff size when group sizes aren't even) Harmonic M=[(2)(N1)(N2)]/(N1+N2)

Ch. 8 (cont)

t test shown in research: t(dftotal)=(tscore), p<.01</pre>

. √ σ μ ∑

Ch. 6

Distribution of Means 3 Chara of
(DoM): The distribution DoM: 1. Its
of the means of each of M 2. Its
many samples of = size spread
and all randomly (SD2+SD)
selected from the same 3. Its shape
population

Rules: Rule 1- PopMm (M of DoM)=PopM (M of pop) Rule 2a- Pop SD2M=SD2/N Rule 2b- Pop SDM=√SD2M Rule 3- The shape of a DoM is approx norm if either a) Each sample has 30+ part b) The dist of the pop of indiv is norm

Z Test: The Z score that is checked against the normal curve

d effect size: small 0<d<0.2 med0.2<d<0.8 large d>0.8

Type I Error: Rejecting the null hypothesis when the null hypothesis is actually true

Type II Error: Accepting the null hypothesis when the null hypothesis is false, aka beta error

Type III Error: Concluding that there is a sig diff in one direction when the true effect is in the other direction

By jagglepop cheatography.com/jagglepop/

Not published yet. Last updated 23rd April, 2025. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Psych 2260 Cheat Sheet by jagglepop via cheatography.com/212492/cs/46171/

Ch. 6 (cont)

Statistical Power: Likelihood that a study will correctly detect a real treatment effect. In other words, the stat pow is the likelihood that the study will correctly reject a null hypothesis

Hypothesis testing steps: Step 1Develop Hypothesis ie- H0: μ1≤μ2 H1:
μ>μ2 Step 2- Determine chara of comp
pop σM=σ/√N Step 3- Determine cutoff
score Step 4- Determine samples score
on the comp dist Z=(M-μM)/σM Step 5:
Decide whether to reject or accept the
null hypothesis

Power Distribution Steps: Step 1: Turn Z cutoff score into raw score M=(Z)(-σM)+μM Step 2: Figure the zscore for the cuttoff M, Z=(M-μM)/(σM) Step 3: Use Table A-1 to determine prob of getting the resulting score from step 2 Power=1-beta

. √ σ h

Ch. 7

T Tests: Hyp test procedures where pop SD2 is unknown(Aka students t)

1 sample t test: scores from one sample where the comp pop has a known M but unknown SD2

Ch. 7 (cont

against our cutoff

score

1 samp t hyp test: In Degrees of

step 2 we have to Freedom:df=nfind the unbiased
estimate of the pop
SD2 S2=[∑(XM)2]/df, in step 3 we
use table A-2 instead
and for step 4 we
need to calculate a tscore t=(M-Pop
M)/SM to compare

Repeated-Measures design: Research situation where 2 scores are taken from each person in the sample (within-subjects design)

t test for dependent For the t test
means: Each person for dep M,
has 2 scores, we use calculate diff
diff scores for the scores before
participants (1 scorethe other) and we
assume pop M is 0

Est. Effect Size (for t test w dep M):

Mean of diff scores/sd of pop of diff
scores Est Eff Size=M/S

· √ σ μ ∑

Ch. 9

ANOVA: Stat
The null hyp for
procedurefor
anova is that the
testing SD2
several pops being
among the Ms
compared have the
of >2 groups
same M

Ch. 9 (cont)

Within-group est of the pop SD2:

Avging pop SD2 est from each sample into a single pooled est. Gives an avg of est figured entirely from the scores within each of the samp

Between-group est of the pop SD2: Est of the SD2 in each pop from the SD2 among the Ms of the samples

Treatment effect: Diff treatment received by the groups causes the groups to have diff Ms

F Ratio: The between-groups est divided by the within-groups est

F Distribution: Math defined curve that is the comp dist used in an ANOVA

Before testing, find M and S2 for each group of part

Within-groups SD2 est: S2Within=(S1-2+S22+...Slast2)/NGroups

Grand M: The overall M of all our scores
GM=∑M/NGroups

Est of SD2 of the Dist of Ms: SM2=[\(\subseteq (M-GM)\(2)\)/dfbetween

Comparison of fig the SD2 of a dist of Ms from the SD2 of a dist of indiv: from dist of indiv->dist of M - S2M=S2/N dist of M->Dist of indiv - S2Between=(S2M)
(N)

F Ratio: Ratio of between-group est of pop SD2 to the within-group est of pop SD2 F=S2Between/S2Within and use table A-3 for comp

Between-groups df: Numerator df dfBetween=NGroups-1

Within-groups df: Denominator df dfWithin=df1+df2+...dfLast

Hyp Test Proc: Find S2 + M for each group->S2Within->GM->dfBetween->dfWithin->S2M->S2Between->F

Ch. 9 (cont)

Effect R2=[(S2Between)(dfBetsize for ween)]/[(S2Between)(dfBe-ANOVA: tween)]+[(S2Within)(dfWi-R2 thin)]

R2 Power Meaning: small .01 med .06 large .14

Factorial ANOVA: ANOVA for factorial research design

Interaction Effect: X = interaction (effect
of one variable impacts the results on
the other)

Two-way ANOVA: Considers the effect of 2 variables that separate groups

Grouping Variables/Ind Variables: Variables that separate groups

One-Way ANOVA: Consider the effect of only one grouping

Diff ANOVA Means: Cell Ms- M of scores in each cell Marginal Ms- M of 1 grouping variable (vertical/horizontal grouping)

Dependent Variable: Represents the effect of the exper proc

One-Way ANOVA in Research: Ftest(dfBetween, dfWithin)=F ratio score, p<.01

. √ σ μ ∑

C

By jagglepop cheatography.com/jagglepop/

Not published yet. Last updated 23rd April, 2025. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com