

Chem 111 Cheat Sheet

by JadeWatson via cheatography.com/20924/cs/3940/

Miscellane	ous Formulas
Area of a Circle	3.14r ²
Volume	area x height
Density	mass/volume
% Compos ition of Element	[(#of atoms of element)x(atomic weight of element)]/formula weight of substance x 100
% Yield	[(actual yield)/(theoretical yield)] x 100
Molarity	(moles of solute)/(volume of solution in Liters)
Effective Nuclear Charge	(atomic number) - (screening constant)
Dipole Moment	Qr
Bond Order	(# shared electrons) - (# nonbonding electrons))
Pressure	(force) / (area)
Pressure x Volume	nRT
Density of Gas	mass / volume
Density of Gas	(pressure x Molarity) / (R x temp.)
Molarity of Gas	(density x R x Temperature) / pressure
Vapor Pressure	-(change in Hvap) / RT + C1

Activity Series	
Lithium	
Potassium	
Barium	
Calcium	
Sodium	
Magnesium	
Aluminium	

Activity Series (cont)
Manganese
Zinc
Chromium
Iron
Cobalt
Nickel
Tin
Lead
Hydrogen
Copper
Silver
Mercury
Platinum
Gold
The higher up, the greater the ease of oxidation

Light Formulas	
The speed of light (c)	3.00 x 10 ⁸ ms
C =	(wavelenght) x (velocity)
Planck's Constant (h)	6.626 x 10 ⁻³⁴ J-s
E =	hv
Rydberg Constant (Rh)	1.097 x 10 ⁷ m ⁻¹
wavelength =	h / (mv)

Calories in Food	
Fat	8.8
Protein	4.1
Carbs	4.1

Intermolecular Forces			
Bond	Substance	Melting Point (K)	Boiling Point (K)
Covalent	Diamond	3800	4300
Metallic	Beryllium	1560	2742
Ionic	Lithium Fluoride	1118	1949
Dispersion Force	Nitrogen	63	77
Dipole- Dipole Force	HCI	158	188
Hydrogen	HF	190	293

Metric System			
Prefix	Abbreviation	Meaning	
Peta	Р	10 ¹⁵	
Tera	Т	10 ¹²	
Giga	G	10 ⁹	
Mega	M	10 ⁶	
Kilo	k	10 ³	
Deci	d	10 ⁻¹	
Centi	С	10 ⁻²	
Milli	m	10 ⁻³	
Micro	u	10 ⁻⁶	
Nano	n	10 ⁻⁹	

Temperature Conversions			
Celsius to Kelvin	K = C + 273.15		
Kelvin to Celsius	C = K - 273.15		
Celsius to Fahrenheit	F = 9/5(C) + 32		
Fahrenheit to Celsius	C = 5/9 (F) - 32		

Laws	
Law of	-French Chemist, Joseph Louis
Constant	Proust (1800):the elemental
Compet-	composition of a compound is
ition	almost always the same

By JadeWatson

Published 28th April, 2015. Last updated 10th May, 2016. Page 1 of 3. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com

cheatography.com/jadewatson/

Chem 111 Cheat Sheet

by JadeWatson via cheatography.com/20924/cs/3940/

Laws (cont)

Law of The total mass of substances

Conse present at the end of a chemical rvation process is the same as the mass of substances present before the Mass process took place

Energy Formul	as
Kinetic	1/2mv ²
Energy (Ek)	
Potential	(kQ1Q2)/d
Energy (Eel)	
Work	force x distance
Work	-Pressure x (change in
	Volume)
Internal	E(final) - E(initial)
Energy	
Enthalpy (H)	(internal energy) +
	(pressure x volume)
Enthalpy of	H (products) - H (reactants)
Reaction	
Specific Heat	(heat transferred) / (mass x
	change in temp.)
Change in	m x s x (change in T)
Enthalpy	
Lattice	K [(Q1Q2) / d]

Exceptions to the Octet Rule

Energy

electrons

- ions or molecules have an odd number of electrons
- ions or molecules with less than an octet -ions or molecules with more than 8 valence

Conversions	
1 amu	1.66054 x 10 ⁻²⁴ g
Grams to Moles	divide by formula weight
Moles to Grams	multiply by formula weight
Moles to Molecules	multiply by 6.022 x 10^{23}
Molecules to Moles	divide by 6.022 x 10 ²³

Мас	Magnetic Quantum Number			
n	I	m1		
1	0	0		
2	0	0		
-	1	1, 0, -1		
3	0	0		
-	1	1, 0, -1		
-	2	2, 1, 0, -1, -2		
4	0	0		
-	1	1, 0, -1		
-	2	2, 1, 0, -1, -2		
_	3	3 2 1 0 -1 -2 -3		

The	Scien	tific N	/leti	nod

-hypothesis: tentative explanation
-theory: an explanation of the general
causes of phenomena
-scientific law: a concise law that
summarizes something
-mass: a measurement of the amount of
material in an agent

SI Units		
Physical Quantity	Name of Unit	Abbrev- iation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s or sec
Tempertature	Kelvin	K
Amount of Substance	Mole	mol
Electric Current	Ampere	amp or A
Luminous Intensity	Candela	cd

States of Matter			
Liquid	Gas	Solid	
assumes shape of the portion of container it occupies	assumes volume and shape of container	retains own shape and volume	
does not expand to fill container	expands to fill container	does not expand to fill container	
is virtually incompressible	is compre- ssible	is virtually incomp-ressible	
flows readily	flows readily	does not flow	
diffusion occurs slowly	diffusion occurs rapidly	diffusion occurs extremely slowly	

Molecular Shapes			
Steric	Electron	Bonding / Molecula	
#	-	Nonbonding	Geometry
	Domain		
2	Linear	2/0	Linear
3	Trigonal	3 / 0	Trigonal
	Planar		Planar

By JadeWatson

Published 28th April, 2015. Last updated 10th May, 2016. Page 2 of 3.

cheatography.com/jadewatson/

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com

Chem 111 Cheat Sheet

by JadeWatson via cheatography.com/20924/cs/3940/

Molecular Shapes (cont)			
		2 / 1	Bent
4	Tetrahedral	4 / 0	Tetrahedral
		3 / 1	Trigonal Pyramid
		2 / 2	Bent
5	Trigonal Bipyramidal	5 / 0	Trigonal Bipyra- midal
		4 / 1	Seesaw
		3 / 2	T-shaped
		2 / 3	Linear
6	Octahedral	6 / 0	Octahedral
		5 / 1	Square Pyramidal
		4 / 2	Square Planar

Strong Bases and Acids		
Strong Acids	Strong Bases	
HCI	LiOH	
HBr	NaOH	
HI	KOH	
HCIO3	RbOH	
HCIO4	CsOH	
HNO3	Sr(OH)	
H2SO4	Ba(OH2)	

Steric # = (# of bonds) - (nonbonding electron pairs)

	Metals vs. Nonmetals		
	Metals	Nonmetals	
	shiny luster, various colors, more silvery	no luster, various colors	
	solids are malleable, ductile	solids are brittle, some hard, some soft	
	good conductors of heat and electr- icity	poor conductors of heat and electricity	
	most oxides are ionic, most solids are basic	most oxides for acidic solutions	
	tend to form cations in aqueous solutions	tend to form anions or oxyanions in aqeuous solutions	

By JadeWatson

Published 28th April, 2015. Last updated 10th May, 2016. Page 3 of 3. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com