Cheatography

Chem 111 Cheat Sheet
by JadeWatson via cheatography.com/20924/cs/3940/

Miscellane	ous Formulas
Area of a Circle	3.14r ²
Volume	area x height
Density	mass/volume
% Compos ition of Element	[(#of atoms of element)x(atomic weight of element)]/formula weight of substance x 100
% Yield	[(actual yield)/(theoretical yield)] x 100
Molarity	(moles of solute)/(volume of solution in Liters)
Effective Nuclear Charge	(atomic number) - (screening constant)
Dipole Moment	Qr
Bond Order	(# shared electrons) - (# nonbonding electrons))
Pressure	(force) / (area)
Pressure x Volume	nRT
Density of Gas	mass / volume
Density of Gas	(pressure x Molarity) / (R x temp.)
Molarity of Gas	(density x R x Temperature) / pressure
Vapor Pressure	-(change in Hvap) / RT + C1

Activity Series Lithium Potassium Barium Calcium Sodium Magnesium Aluminium

By JadeWatson

Activity Series (cont)

Manganese
Zinc
Chromium
Iron
Cobalt
Nickel
Tin
Lead
Hydrogen
Copper
Silver
Mercury
Platinum
Gold
The higher up, the greater the ease of oxidation

Light Formulas	
The speed of light (c)	3.00 x 10 ⁸ ms
C =	(wavelenght) x (velocity)
Planck's Constant (h)	6.626 x 10 ⁻³⁴ J-s
E =	hv
Rydberg Constant (Rh)	1.097 x 10 ⁷ m ⁻¹
wavelength =	h / (mv)

Calories in Food	
Fat	8.8
Protein	4.1
Carbs	4.1

Published 28th April, 2015. Last updated 10th May, 2016. Page 1 of 3.

Intermolecular Forces			
Bond	Substance	Melting Point (K)	Boiling Point (K)
Covalent	Diamond	3800	4300
Metallic	Beryllium	1560	2742
Ionic	Lithium Fluoride	1118	1949
Dispersion Force	Nitrogen	63	77
Dipole- Dipole Force	HCI	158	188
Hydrogen	HF	190	293

Metric System			
Prefix	Abbreviation	Meaning	
Peta	Р	10 ¹⁵	
Tera	Т	10 ¹²	
Giga	G	10 ⁹	
Mega	Μ	10 ⁶	
Kilo	k	10 ³	
Deci	d	10 ⁻¹	
Centi	с	10 ⁻²	
Milli	m	10 ⁻³	
Micro	u	10 ⁻⁶	
Nano	n	10 ⁻⁹	

Temperature Conversions	s
Celsius to Kelvin	K = C + 273.15
Kelvin to Celsius	C = K - 273.15
Celsius to Fahrenheit	F = 9/5(C) + 32
Fahrenheit to Celsius	C = 5/9 (F) - 32

Laws	
Law of	-French Chemist, Joseph Louis
Constant	Proust (1800):the elemental
Compet-	composition of a compound is
ition	almost always the same

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/jadewatson/

Cheatography

Laws (cont)			
Law of	The total mass of substances		
Conse	present at the end of a chemical		
rvation	process is the same as the mass		
of	of substances present before the		
Mass	process took place		

Energy Formulas 1/2mv² Kinetic Energy (Ek) Potential (kQ1Q2)/d Energy (Eel) Work force x distance -Pressure x (change in Work Volume) Internal E(final) - E(initial) Energy Enthalpy (H) (internal energy) + (pressure x volume) Enthalpy of H (products) - H (reactants) Reaction Specific Heat (heat transferred) / (mass x change in temp.) Change in m x s x (change in T) Enthalpy K [(Q1Q2) / d] Lattice Energy

Exceptions to the Octet Rule

- ions or molecules have an odd number of electrons

- ions or molecules with less than an octet -ions or molecules with more than 8 valence electrons

Chem 111 Cheat Sheet by JadeWatson via cheatography.com/20924/cs/3940/

Conversions	
1 amu	1.66054 x 10 ⁻²⁴ g
Grams to Moles	divide by formula weight
Moles to Grams	multiply by formula weight
Moles to Molecules	multiply by 6.022 x 10 ²³
Molecules to Moles	divide by 6.022 x 10 ²³

Magnetic Quantum Number			
n	Ι	m1	
1	0	0	
2	0	0	
-	1	1, 0, -1	
3	0	0	
-	1	1, 0, -1	
-	2	2, 1, 0, -1, -2	
4	0	0	
-	1	1, 0, -1	
-	2	2, 1, 0, -1, -2	
-	3	3, 2, 1, 0, -1, -2, -3	

The Scientific Method

-hypothesis: tentative explanation -theory: an explanation of the general causes of phenomena -scientific law: a concise law that summarizes something -mass: a measurement of the amount of material in an agent

SI Units **Physical Quantity** Name of Abbrev-Unit iation Mass Kilogram kg Meter Length m Time Second s or sec Kelvin Tempertature Κ Amount of Mole mol Substance **Electric Current** Ampere amp or A Luminous Candela cd Intensity

States of Matter			
Liquid	Gas	Solid	
assumes shape of the portion of container it occupies	assumes volume and shape of container	retains own shape and volume	
does not expand to fill container	expands to fill container	does not expand to fill container	
is virtually incompressible	is compre- ssible	is virtually incomp- ressible	
flows readily	flows readily	does not flow	
diffusion occurs slowly	diffusion occurs rapidly	diffusion occurs extremely slowly	

Molecular Shapes				
Steric #	Electron - Domain	Bonding / Nonbonding	Molecular Geometry	
2	Linear	2/0	Linear	
3	Trigonal Planar	3 / 0	Trigonal Planar	

By JadeWatson

Published 28th April, 2015. Last updated 10th May, 2016. Page 2 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/jadewatson/

Chem 111 Cheat Sheet

Cheatography

by JadeWatson via cheatography.com/20924/cs/3940/

Molecular Shapes (cont)			
		2 / 1	Bent
4	Tetrahedral	4 / 0	Tetrahedral
		3 / 1	Trigonal Pyramid
		2 / 2	Bent
5	Trigonal Bipyramidal	5 / 0	Trigonal Bipyra- midal
		4 / 1	Seesaw
		3 / 2	T-shaped
		2 / 3	Linear
6	Octahedral	6 / 0	Octahedral
		5 / 1	Square Pyramidal
		4 / 2	Square Planar

	Strong Bases and	Strong Bases and Acids		
	Strong Acids	Strong Bases		
	HCI	LiOH		
	HBr	NaOH		
	HI	КОН		
	HCIO3	RbOH		
	HCIO4	CsOH		
	HNO3	Sr(OH)		
-	H2SO4	Ba(OH2)		

Steric # = (# of bonds) - (nonbonding electron pairs)

Metals vs. Nonmetals

Metals	Nonmetals
shiny luster, various colors, more silvery	no luster, various colors
solids are malleable, ductile	solids are brittle, some hard, some soft
good conductors of heat and electr- icity	poor conductors of heat and electricity
most oxides are ionic, most solids are basic	most oxides for acidic solutions
tend to form cations in aqueous solutions	tend to form anions or oxyanions in aqeuous solutions

By JadeWatson

Published 28th April, 2015. Last updated 10th May, 2016. Page 3 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/jadewatson/